Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)
\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)
\(\Delta'=m^2-2m+1-m^2-m\)
\(\Delta'=-3m+1\)
để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)
b) \(3x^2+mx+m^2=0\)
có \(\Delta=m^2-4.3.m^2\)
\(\Delta=m^2-12m^2=-11m^2\)
để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)
c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)
\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)
\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)
để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)
\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)
\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)
\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )
\(\Leftrightarrow m>0\)
vậy \(m>0\) và \(m\ne1\)
Bài 2 :
a) Pt : \(\left(a-3\right)x^2-2\left(a-1\right)x+a-5=0\)
a = a - 3
b = 2 (a-1) => b' = a-1
c = a-5
Đk1 :
\(a\ne0\)
=> \(a-3\ne0\)
=> \(a\ne3\)
Đk2 :
\(\Delta'>0\Rightarrow\left(a-1\right)^2-\left(a-3\right)\left(a-5\right)>0\)
\(\Leftrightarrow a^2-2a+1-a^2+8a-15>0\)
<=> -14 + 6a >0
<=> 6a > 14
<=> \(a>\dfrac{7}{3}\)
Vậy để pt có 2 nghiệm phân biệt thì a khác 3 và a > 7/3.
b) Pt : \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\)
a = m-1
b = 2 (m-1) => b' = m-1
c = -m
\(\Delta'=\left(m-1\right)^2-\left(m-1\right).\left(-m\right)=m^2-2m+1+m^2-m=2m^2-3m+1\)
Để pt có nghiệm kép thì :
\(\Delta'=0\)
<=> 2m2 -3m + 1 =0
<=> \(2m^2-2m-m+1=0\)
<=> \(\left(2m^2-2m\right)-\left(m-1\right)=0\)
<=> \(2m\left(m-1\right)-\left(m-1\right)=0\)
<=> \(\left(2m-1\right)\left(m-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2m-1=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=1\\m=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=1\end{matrix}\right.\)
\(\cdot TH1:x_1=x_2=\dfrac{-b'}{a}=\dfrac{-\left(\dfrac{1}{2}-1\right)}{\dfrac{1}{2}-1}=-1\)
\(\cdot TH2:x_1=x_2=\dfrac{-\left(1-1\right)}{1-1}\) mẫu phải khác 0 nên => không thỏa mãn.
Chỗ câu 2a (Đk2) mình xác định sai ạ, làm lại nhé :)
a = a-3
b = -2 (a -1) => b' = - (a-1)
c = a - 5
=> △' = \(b'^2-ac=\left(-a-1\right)^2-\left(a-3\right)\left(a-5\right)=9a-14\)
Để pt có 2 nghiệm phân biệt thì :
△' > 0
=> 9a - 14 > 0
=> 9a > 14
=> a > \(\dfrac{14}{9}\)
1/ \(x^3-5x^2+5x+2+2mx-4m=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x-1\right)+2m\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-3x+2m-1\right)=0\)
Để pt có 3 nghiệm phân biệt thì \(x^2-3x+2m-1=0\) (1) có 2 nghiệm phân biệt khác 2
\(\Rightarrow\Delta=9-4\left(2m-1\right)=13-8m>0\Rightarrow m< \dfrac{13}{8};m\ne\dfrac{3}{2}\)
\(x_1^2+x^2_2+x^2_3=11\Leftrightarrow x_1^2+x_2^2=7\) với \(x_1;x_2\) là 2 nghiệm của (1)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=7\Leftrightarrow9-2\left(2m-1\right)=7\)
\(\Leftrightarrow2m-1=1\Rightarrow m=1\)
2/ Do gõ \(x_1;x_2\) lại thêm mũ rất mệt, nên ta đặt \(x_1=a;x_2=b\) gõ cho nhanh với \(\left\{{}\begin{matrix}a+b=x_1+x_2=2\\ab=x_1x_2=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+b^2=\left(a+b\right)^2-2ab=12\\a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=32\\a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=112\end{matrix}\right.\)
\(A=a^7+b^7=\left(a^6+b^6\right)\left(a+b\right)-ab\left(a^5+b^5\right)\)
\(\)\(=2\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)+4\left[\left(a^4+b^4\right)\left(a+b\right)-ab\left(a^3+b^3\right)\right]\)
\(=2.12\left(112-\left(-4\right)^2\right)+4\left[112.2-\left(-4\right).32\right]\)
\(=3712\)
\(\Delta=\left(4m-1\right)^2-4\left(3m^2-2m\right)=4m^2+1\)
Vì \(4m^2\ge0\Rightarrow\Delta>0\)
Vậy pt luôn có 2 nghiệm phân biệt \(x_1,x_2\) với \(\forall m\)
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=4m-1\\x_1.x_2=3m^2-2m\end{matrix}\right.\)
Theo bài ra: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=7\)
Kết hợp Vi-ét: \(\left(4m-1\right)^2-2\left(3m^2-2m\right)-7=0\)
\(\Leftrightarrow10m^2-4m-6=0\)\(\Rightarrow\left[{}\begin{matrix}m=1\left(tm\right)\\m=-\frac{3}{5}\left(tm\right)\end{matrix}\right.\)
Vậy ...
\(\Delta'=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm pb \(\Leftrightarrow m\ne2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4m-4\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm của pt nên:
\(x_1^2-2mx_1+4m-4=0\Leftrightarrow x_1^2=2mx_1-4m+4\)
Thay vào bài toán:
\(2mx_1-4m+4+2mx_2-8m+5=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-12m+9=0\)
\(\Leftrightarrow4m^2-12m+9=0\)
\(\Leftrightarrow\left(2m-3\right)^2=0\Rightarrow m=\frac{3}{2}\)
giúp mình bài này nữa được không Nguyễn Việt Lâm:
Cho phương trình x2-m2x+2m+1=0. Tìm hệ thức liên hệ giữa x1,x2 không phụ thuộc vào m
xin lỗi mih lớp 7 thui ak