Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a thay x=2 vào phương trình thì tìm được \(\orbr{\begin{cases}m=-\frac{3}{2}\\m=\frac{5}{2}\end{cases}}\)\
b) m2x2 - 2(m+1).x +1 =0
\(\Delta=\left[-2\left(m+1\right)\right]^2-4m^2.1\)\(=4m^2+8m+4-4m^2=4\left(2m+1\right)\)
Phương trình có 2 nghiệm phân biệt khi và chỉ khi: \(\hept{\begin{cases}a\ne0\\\Delta>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2\ne0\\4\left(2m+1\right)>0\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne0\\m>-\frac{1}{2}\end{cases}}}\)
B1 : giải PT (m tham số ) bằng cách tính denta > 0
B2 : áp dụng hệ thức VI-ÉT .. X1 + X2 = -b/a
.. X1X2 = c/a
B3: thay x1 + x2 = -b/a vào pt (2)
thay x1x2 = c/a vào pt (2)
a) thay m=-1 vào pt(1) có : (-1+1)x2 -(2.1+3)x+1+4=0
\(\Leftrightarrow-5x+5=0\)
\(\Leftrightarrow-5.\left(x-1\right)=0\)
\(\Leftrightarrow x=1\)
vậy ....
b) ĐK pt(1) : m+1\(\ne0\)\(\Leftrightarrow m\ne-1\)
\(\Delta=b^2-4ac=[-\left(2m+3\right)]^2-4.\left(m+1\right).\left(m+4\right)\)
........
Lời giải:
Để PT có nghiệm nguyên thì:
$\Delta=(2m-1)^2+20=t^2(*)$ với $t\in\mathbb{N}^*$
$\Rightarrow 2m$ cũng phải là số nguyên.
$(*)\Leftrightarrow 20=(t-2m+1)(t+2m-1)$
Vì $t+2m-1+t-2m+1=2t>0$ nên 2 thừa số này không thể cùng âm. Mà tích của chúng dương nên cả 2 thừa số đều dương.
Đồng thời $t+2m-1, t-2m+1$ cùng tính chẵn lẻ.
Do đó $(t+2m-1, t-2m+1)=(10,2); (2,10)$
$\Rightarrow m=2,5; -1,5$
Thử lại:
$m=2,5$ thì pt có nghiệm nguyên $x=5; x=-1$
$m=-1,5$ thì pt có nghiệm nguyên $x=1; x=-5$