Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+2016^2+2016x+2015=x^3-1+2016x^2+2016x+2016=\left(x-1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x+2015\right)\)
\(\frac{2}{x^2-2015x+2014}=\frac{1}{x^2-2016x+2015}\)
\(\Leftrightarrow\frac{2}{\left(x-1\right)\left(x-2014\right)}=\frac{1}{\left(x-1\right)\left(x-2015\right)}\)
\(\Leftrightarrow\frac{2}{x-2014}=\frac{1}{x-2015}\)
áp dụng tính chất tỉ lệ thức ta có:
\(\frac{2}{x-2014-2}=\frac{1}{x-2015-1}\)
\(\Leftrightarrow\frac{2}{x-2016}-\frac{1}{x-2016}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2016=0\)
\(\Leftrightarrow x=2016\)
a) x6 - x5(x - 1 ) - x4(x + 1) + x3(x-1 ) + x2(x +1 ) - x(x - 1 ) + 1 khi x=999
=x6-x6 - x5 + x5 + x4 - x4....+x2 - x2 + x +1
= x+1
Thay x= 999, ta có
= 999+1 = 1000
a.\(x^6-x^5\left(x-1\right)-x^4\left(x+1\right)+x^3\left(x-1\right)+x^2\left(x+1\right)-x\left(x-1\right)+1\)
= \(x^6-x^6+x^5-x^5-x^4+x^4-x^3+x^3+x^2-x^2+x+1\)
= \(x+1\)
=999+1=1000
b. Thay 2014=x-1 và 2016=x+1 vào biểu thức A, ta được:
\(A=\left(x-1\right)x^3-\left(x+1\right)x^4+x^5\)
\(=x^4-x^3-x^5-x^4+x^5\)
\(=-x^3=-2015^3\)
( Mk chỉ làm được như thế thôi, mong là sẽ giúp ích cho bạn... Nếu sai thì mình sorry nhé!!! với lại mình làm hơi tắt bạn nhé)
bạn có: x^4 + 2016x^2 + 2015x + 2016
= x^4 + x^3 + x^2 - x^3 - x^2 - x + 2016x^2 + 2016x + 2016
= x^2(x^2 + x + 1) - x(x^2 + x + 1) + 2016(x^2 + x + 1)
= (x^2 + x + 1)(x^2 - x + 2016)
\(x^4+2016x^2+2015x+2016\)
=\(x^4+x^3+x^2+2015x^2+2015x+2015+1-x^3\)
=\(x^2\left(x^2+x+1\right)+2015\left(x^2+x+1\right)+\left(1-x\right)\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2+2015+1-x\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2016\right)\)
\(x^2-2016x+2015=0\)
=> x = 1
x = 2015
x=2015 nha bn
k mk nha