K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

d)Áp dụng BĐT AM-GM

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+4\ge2\sqrt{4y^2}=4y\)

\(z^2+9\ge2\sqrt{9z^2}=6z\)

Nhân theo vế ta có:

\(VT=\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x\cdot4y\cdot6z=48xyz=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

e)Áp dụng BĐT AM-GM ta có:

\(x+1\ge2\sqrt{x}\)

\(y+1\ge2\sqrt{y}\)

\(x+y\ge2\sqrt{xy}\)

Nhân theo vế ta có:

\(VT=\left(x+1\right)\left(y+1\right)\left(x+y\right)\ge2\sqrt{x}\cdot2\sqrt{x}\cdot2\sqrt{xy}=8xy=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+1=2\sqrt{x}\\y+1=2\sqrt{y}\\x+y=2\sqrt{xy}\left(x+y\ge0\right)\end{matrix}\right.\)\(\Rightarrow x=y=0\)

11 tháng 3 2017

mấy câu còn lại áp dụng HĐT thôi, khá dễ !!

29 tháng 3 2017

Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1

Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3

vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz

Dấu = xảy ra khi x =1, y =2, z = 3

Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)

4 tháng 3 2017

Ta có: \(\left(x-1\right)^2\ge0\) <=> \(x^2+1\ge2x\) (1)

\(\left(y-2\right)^2\ge0\) <=> \(y^2+4\ge4y\) (2)

\(\left(z-3\right)^2\ge0\) <=> \(z^2+9\ge6z\) (3)

Nhân vế theo vế các bđt (1), (2), (3) được:

\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\) mặt khác theo bài ra: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)=48xyz\) => Dấu "=" xảy ra <=>

\(\left\{\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\) <=> \(\left\{\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Đến đây thì bạn tự túc! :)))

19 tháng 3 2017

Ta có: 

\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Thế vào A ta được:

\(A=\frac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=1\)  

19 tháng 3 2017

bằng 1 mk làm rùi

14 tháng 3 2018

Ta có: \(x;y;z\ge0\)

\(x^2+1\ge2x\)

\(y^2+4\ge4xy\)

\(z^2+9\ge6z\)

\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\)

Dấu bằng xảy ra khi: x = 1 ; y = 2 và z = 3

\(\Rightarrow A=\frac{1^2+2^2+3^2}{\left(1+2+3\right)^2}=1\)

11 tháng 7 2016

1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)

3)  Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)

Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)

8 tháng 7 2016

1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\left(1\right)\\y^2+z^2\ge2yz\left(2\right)\\z^2+x^2\ge2zx\left(3\right)\end{cases}}\)

 Cộng (1) , (2) , (3) theo vế được ; \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

2) Áp dụng câu trên được : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

Tương tự : \(\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)

Vậy \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

3) Đề đúng phải là : \(x^4-2x^3+2x^2-2x+1\ge0\)

Ta có : \(x^4-2x^3+2x^2-2x+1\ge0\left(1\right)\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\ge0\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)(Luôn đúng)

Do đó (1) được chứng minh.