K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

đề là \(x^2-\frac{1}{x^2}\)hay là \(x^2+\frac{1}{x^2}\)vậy? Xem lại đề thử xem!

30 tháng 6 2019

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right);\left(-1;1\right);\left(-1;-1\right)\) 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.

Có:

$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$

Vậy $y=\frac{1}{27}x$

$y_1=\frac{1}{27}x_1$

Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$

$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$

b. Đặt $y=kx$

$y_1=kx_1$

$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.

$\Rightarrow y_2=\frac{-2}{5}x_2$

Thay vào điều kiện $y_2-x_2=-7$ thì:

$\frac{-2}{5}x_2-x_2=-7$

$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$

$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)

nên \(\dfrac{x}{6}=\dfrac{y}{9}\left(1\right)\)

Ta có: \(\dfrac{x}{3}=\dfrac{z}{5}\)

nên \(\dfrac{x}{6}=\dfrac{z}{10}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\)

Đặt \(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=9k\\z=10k\end{matrix}\right.\)

Ta có: \(x^2+y^2+z^2=21\)

\(\Leftrightarrow k^2=\dfrac{21}{217}\)

Trường hợp 1: \(k=\dfrac{\sqrt{93}}{31}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{6\sqrt{93}}{31}\\y=9k=\dfrac{9\sqrt{93}}{31}\\z=10k=\dfrac{10\sqrt{93}}{31}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{\sqrt{93}}{31}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=6k=\dfrac{-6\sqrt{93}}{31}\\y=9k=\dfrac{-9\sqrt{93}}{31}\\z=10k=\dfrac{-10\sqrt{93}}{31}\end{matrix}\right.\)

9 tháng 9 2021

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}=\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{217}=\dfrac{21}{217}=\dfrac{3}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{31}\cdot6=\dfrac{18}{31}\\y=\dfrac{3}{31}\cdot9=\dfrac{27}{31}\\z=\dfrac{3}{31}\cdot10=\dfrac{30}{31}\end{matrix}\right.\)

b: x,y tỉ lệ nghịch

=>x1*y1=x2*y2

=>x1/y2=x2/y1=k

=>x1=y2*k; x2=y1*k

x1+x2=6

=>k*(y1+y2)=6

=>\(y_1+y_2=\dfrac{6}{k}\)

c: x1/y2=x2/y1

=>x1/x2=y2/y1

=>x1/3=y2/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{3}=\dfrac{y_2}{12}=\dfrac{x_1+2y_2}{3+2\cdot12}=\dfrac{18}{27}=\dfrac{2}{3}\)

=>\(x_1=2;y_2=8\)

Bài 1 ) a,y2=kx2⇒−2=5k⇒k=−25a,y2=kx2⇒−2=5k⇒k=−25 (k là hệ số tỉ lệ)

⇒y1=−25x1=−3⇒x1=152⇒y1=−25x1=−3⇒x1=152

b,y1=kx1⇒k=32⇒y2=32x2⇒x2+32x2=10⇒52x2=10⇒x2=4⇒y2=32⋅4=6

Bài 2 gọi khối lượng là x

Có khối lương tỉ lệ thuận với độ dài =) x=k.4m

=) 100g=k.4m =) k=25

Có khối lương tỉ lệ thuận với độ dài =) x=k.500m

=)x=25.500 ( vì k=25 )

=) x=12500g=12,5 kg

HT

30 tháng 11 2018

Do y tỉ lệ thuận với x theo hệ số tỉ lệ k => \(\dfrac{x1}{y1}=\dfrac{x2}{y2}=k\)

\(x1+x2=3\)\(y1+y2=-6\)

=> \(k=\dfrac{x1+x2}{y1+y2}=\dfrac{3}{-6}=\dfrac{-1}{2}\)

Vậy \(k=\dfrac{-1}{2}\)

Mình chưa chắc là đúng đâu bucminh