Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(5.\left(x-2\right)+3.\left(x-2\right)=0\)
\(\Rightarrow8.\left(x-2\right)=0\)
\(\Rightarrow x-2=0:8\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
Vậy...
b. \(\dfrac{2}{3}+\dfrac{5}{2}:x=\dfrac{2}{4}\)
\(\Rightarrow\dfrac{5}{2}:x=\dfrac{2}{4}-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{5}{2}:x=\dfrac{-1}{6}\)
\(\Rightarrow x=\dfrac{5}{2}:\dfrac{-1}{6}=-15\)
Vậy...
c. \(2.\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow x-\dfrac{1}{7}=0:2\)
\(\Rightarrow x-\dfrac{1}{7}=0\)
\(\Rightarrow x=\dfrac{1}{7}\)
Vậy...
d. \(\dfrac{11}{20}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{2}{5}+x=\dfrac{11}{12}:\dfrac{2}{3}\)
\(\Rightarrow\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{4}-\dfrac{2}{5}=\dfrac{-3}{20}\)
Vậy...
e. \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(\Rightarrow x=\dfrac{1}{4}:\dfrac{-7}{20}=\dfrac{-5}{7}\)
Vậy...
g. \(\dfrac{2}{3}x+\dfrac{5}{7}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{2}{3}x=\dfrac{3}{10}-\dfrac{5}{7}\)
\(\Rightarrow\dfrac{2}{3}x=\dfrac{-29}{70}\)
\(\Rightarrow x=\dfrac{-29}{70}:\dfrac{2}{3}=\dfrac{-87}{140}\)
Vậy...
(x^2-1)(x^2-4)(x^2-7)(x^2-10)<0
=> có 3 thừa số âm, 1 thừa số dương
dĩ nhiên thừa so dương là thừa số lớn nhất trong biểu thức. vậy x^2-1 lớn nhất. => x^2 - 1 >0 thì x^2 >1
mặt khác, cũng có thể là 3 thừa so dương, 1 thừa số âm
dĩ nhiên thừa số âm là thừa số có giá trị nhỏ nhất trong biểu thức. vậy x^2-10 nhỏ nhất => x^2 - 10 <0 thì x^2 < 10
giới hạn vị trí của x^2, ta được:
10>x^2>1^2
=> x^2= {4;9}
nếu x^2=4 thì x^2-4=0 => biểu thức=0
vậy x^2=9 thì x={3;-3}
a; \(x\) - \(\dfrac{3}{5}\) = 1 - \(\dfrac{4}{5}\) + \(\dfrac{1}{6}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{30}{30}\) - \(\dfrac{24}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{6}{30}\) + \(\dfrac{5}{30}\)
\(x\) - \(\dfrac{3}{5}\) = \(\dfrac{11}{30}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{3}{5}\)
\(x\) = \(\dfrac{11}{30}\) + \(\dfrac{18}{30}\)
\(x\) = \(\dfrac{29}{30}\)
Vậy \(x\) = \(\dfrac{29}{30}\)
b; (- \(\dfrac{10}{4}\)) + \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) thế \(x\) của em đâu nhỉ???
c; - \(\dfrac{3}{2}\) + (\(x\) - \(\dfrac{1}{2}\)) = \(\dfrac{1}{2}\)
\(x\) - \(\dfrac{1}{2}\) = \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\)
\(x\) - \(\dfrac{1}{2}\) = 2
\(x\) = 2 + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{4}{2}\) + \(\dfrac{1}{2}\)
\(x\) = \(\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
9: =>x-3=2
=>x=5
10: =>x+1/2=1/5 hoặc x+1/2=-1/5
=>x=-7/10 hoặc x=-3/10
12:
a: =>x^2=900
=>x=30 hoặc x=-30
b: =>x=1/18*27=3/2
7: =>|x-0,4|=1,1
=>x-0,4=1,1 hoặc x-0,4=-1,1
=>x=1,5 hoặc x=-0,7
Thật là một bài toán khó!
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Ta có: \(\left(x^2-1\right)>\left(x^2-4\right)>\left(x^2-7\right)>\left(x^2-10\right)\)
Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
Thì \(\hept{\begin{cases}\left(x^2-1\right)\left(x^2-4\right)>0\\\left(x^2-7\right)\left(x^2-10\right)< 0\end{cases}}\)suy ra
Dễ thấy giá trị lớn nhất của \(x^2\) để \(x^2-10< 0\)là: 9. Suy ra x = 3
Dễ thấy giá trị nhỏ nhất của \(x^2\)để \(x^2-7>0\)là: 8 . Suy ra \(x=2\sqrt{2}\)
(Ta không cần xét giá trị nhỏ nhất của x để \(x^2-4>0\)hoặc \(x^2-1>0\))
Do đó ta có 2 giá trị của x là: \(\hept{\begin{cases}x_1=2\sqrt{2}\\x_2=3\end{cases}}\)
Vậy.....