\(x^2_1.x_1+x_2^2.x_1-x_1-x_2=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 6 2020

Yêu cầu của đề bài là gì thế bạn?

10 tháng 5 2017

Ta có \(\Delta\)'= \(\left(-m\right)^2-2m+2=\left(m-1\right)^2+1>0\veebar m\)

Vậy với mọi giá trị của m thì phương trình đã cho luôn có 2 nghiệm phân biệt

Theo hệ thức Vi-ét ta có \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=2m-2\end{matrix}\right.\)

Thay giá trị của \(x_1+x_2\)\(x_1.x_2\) vào biểu thức A ta được :

\(A=\dfrac{6.\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-2x_1x_2+4\left(x_1+x_2\right)}=\dfrac{12m}{4m^2+4m+4}\)

\(A=\dfrac{3m}{m^2+m+1}\)

Cm: \(3m\le m^2+m+1\)

\(\Leftrightarrow\left(m-1\right)^2\ge0\) (luôn đúng ) (dấu = xảy ra khi x=1)

Do đó \(3m\le m^2+m+1\) khi đó ta được:

\(A=\dfrac{3m}{m+m+1}\le1\)

Vậy với GTLN của A = 1 khi và chỉ khi m=1

10 tháng 5 2017

mình gõ nhầm dấu = xảy ra khi m=1 chứ không phải x=1

3 tháng 6 2017

Xét pt (1) có:

\(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)

= \(4m^2-4m+8\)

= \(\left(2m-1\right)^2+7>0\)

\(\Rightarrow\) Pt (1) luôn có 2 nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\)

\(\Leftrightarrow2-x_2+2x_1-x_1x_2+2-x_1+2x_2-x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2+2\) \(\Leftrightarrow-\left(x_1+x_2\right)+2\left(x_1+x_2\right)+2-\left(x_1+x_2\right)^2=0\)

\(\Leftrightarrow-\left(x_1+x_2\right)\left[1-2+\left(x_1+x_2\right)\right]+2=0\)

\(\Leftrightarrow-2m\left(2m-1\right)+2=0\)

\(\Leftrightarrow-4m^2+2m+2=0\)

\(\Leftrightarrow\left(m-1\right)\left(2m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-1=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy để pt (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(1+x_1\right)\left(2-x_2\right)+\left(1+x_2\right)\left(2-x_1\right)=x_1^2+x_2^2+2\) thì \(m=1\) hoặc \(m=\dfrac{-1}{2}\)

3 tháng 6 2017

\(\Delta\)' = m2 - m + 2 = m2 - 2.m.\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\) + 2 = \(\left(m-\dfrac{1}{2}\right)^2\) + \(\dfrac{7}{4}\) \(\ge\) \(\dfrac{7}{4}\) > 0

\(\Rightarrow\) phương trình luôn có 2 nghiệm \(\forall\)m

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=m-2\end{matrix}\right.\)

(1 + x1)(2 - x2) + (1 + x2)(2 - x1) = x12 + x22 + 2

2 - x2 + 2x1 - x1x2 + 2 - x1 + 2x2 - x1x2 = (x1 + x2)2 - 2x1x2 + 2

= (x1 + x2)2 - (x1 + x2) - 2 = 0

thay vào ta có : (2m)2 - 2m - 2 = 0

4m2 - 2m - 2 = 0 ta có : a + b + c = 4 - 2 - 2 = 0

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

m1 = 1 ; m2 = \(\dfrac{c}{a}\) = \(-\dfrac{1}{2}\)

vậy m = 1 ; m = \(-\dfrac{1}{2}\) thảo mảng điều kiện bài toán

13 tháng 5 2017

Theo hệ thức viet thì đáp án là câu d(đk là a khác 0)

1 tháng 6 2017

chọn câu d)

NV
19 tháng 5 2019

\(\Delta=4m^2-4m+1-4m-4=4m^2-8m-3\ge0\)

Để biểu thức A xác định thì \(x_1+x_2=2m-1\ne0\Rightarrow m\ne\frac{1}{2}\)

\(A=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1+x_2\right)^2}=\frac{\left(2m-1\right)^2-2\left(m+1\right)}{\left(2m-1\right)^2}\)

\(A=\frac{4m^2-6m-1}{4m^2-4m+1}\Rightarrow4Am^2-4Am+A=4m^2-6m-1\)

\(\Leftrightarrow\left(4A-4\right)m^2-2\left(2A-3\right)m+A+1=0\)

\(\Delta'=\left(2A-3\right)^2-\left(A+1\right)\left(4A-4\right)\ge0\)

\(\Leftrightarrow-12A+13\ge0\Rightarrow A\le\frac{13}{12}\)

\(\Rightarrow A_{max}=\frac{13}{12}\) khi \(m=-\frac{5}{2}\)

Thay \(m=-\frac{5}{2}\) vào điều kiện \(\Delta\) để thử thấy phù hợp, vậy...