
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, x2 + 10x + 27
Đặt A = x2 + 2. x. 5 + 52 + 2
= ( x + 5 )2 + 2
Vì ( x + 5 )2 \(\ge\)0 với mọi x
=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x
Hay A \(\ge\)2
Dấu " = " xảy ra khi:
( x + 5 )2 = 0
x + 5 = 0
x = - 5
Vậy Min A = 2 khi x = - 5
b, x2 + x + 7
Đặt B = x2 + x + 7
\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)
\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x
Hay B \(\ge\frac{27}{4}\)
Dấu " = " xảy ra khi:
\(\left(x+\frac{1}{2}\right)^2=0\)
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)
a) x2 + 10 x + 27 =( x2 + 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2
Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5
b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+ \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4 = 0
Vì ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x
Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\)
c + d ) Tương tự a, b
e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x2 + 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 ) 2 --43 = 0 ( 1 )
Vì ( x + 7 )2 \(\ge\) 0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên ( 1 ) \(\ge\) --43 với mọi x, y
Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)

e, Ta có: \(\Delta\)'\(=\left(-6\right)^2-4.5=16>0\)
Suy ra \(\sqrt{\Delta'}=\sqrt{16}=4\)
Vậy phương trình đã cho có 2 nghiệm phân biệt
\(x_1=\dfrac{-b'-\sqrt{\Delta'}}{a}=\dfrac{6-4}{4}=\dfrac{1}{2}\)
\(x_2=\dfrac{-b'+\sqrt{\Delta'}}{a}=\dfrac{6+4}{4}=\dfrac{5}{2}\)
Vậy phương trình đã cho có 2 nghiệm là 1/2;5/2
f,Ta có : a+-b+c=2-5+3=0
Do đó phương trình đã cho có 2 nghiệm \(x_1\)=-1 hoặc \(x_2=\dfrac{-c}{a}=-\dfrac{3}{2}\)
g,Ta có: a+b+c=1+1-2=0
Do phương trình đã cho có 2 nghiệm \(x_1\)=1 hoặc \(x_2=\dfrac{c}{a}=-2\)
h,Ta có a+b+c=1-4+3=0
Do đó phương trình đã cho có 2 nghiệm \(x_1=1\) hoặc \(x_2=\dfrac{c}{a}=3\)
g, \(x^2+x-2=0\)
\(\Rightarrow x^2-x+2x-2=0\)
\(\Rightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)
\(\Rightarrow x.\left(x-1\right)+2.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right).\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy......
h, \(x^2-4x+3=0\)
\(\Rightarrow x^2-3x-x+3=0\)
\(\Rightarrow\left(x^2-3x\right)-\left(x-3\right)=0\)
\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy......
Chúc bạn học tốt!!!

a)12x-9-4x2=0
\(\Leftrightarrow-\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\\ \Leftrightarrow x=\dfrac{3}{2}\)
b) x+x2-x3-x4 =0
\(\Leftrightarrow x\left(1-x^2\right)+x^2\left(1-x^2\right)=0\)
\(\Leftrightarrow x\left(1-x\right)\left(x+1\right)^2=0\)
=> x=0 hoặc x=1 hoặc x=-1
c)

a) \(x^2+x+1=\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\) với mọi \(x\) (đpcm)
b) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{1}{4}\right)\)
\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\) với mọi \(x\) (đpcm)
c) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left(9x^2-2.3.2x+4+11\right)\)
\(=-\left(\left(3x-2\right)^2+11\right)=-\left(3x-2\right)^2-11\)
ta có : \(\left(3x-2\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(3x-2\right)^2-11\le-11< 0\) với mọi \(x\) (đpcm)
d) \(3x-x^2-4=-\left(x^2-3x+4\right)=-\left(\left(x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right)+\dfrac{7}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\) ta có \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\)
\(\Rightarrow-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\le\dfrac{-7}{4}< 0\) với mọi \(x\) (đpcm)
e) \(6x-3x^2-5=-3\left(x^2-2x+\dfrac{5}{3}\right)=-3\left(\left(x^2-2x+1\right)+\dfrac{2}{3}\right)\)
\(=-3\left(\left(x-1\right)^2+\dfrac{2}{3}\right)=-3\left(x-1\right)^2-2\)
ta có \(\left(x-1\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-3\left(x-1\right)^2-2\le-2< 0\) với mọi \(x\) (đpcm)

a.A= \(x^2+10x+27\)
\(=x^2+2.x.5+25+2\)
\(\left(x+5\right)^2+2\ge2\forall x\)
Dấu " = " xảy ra <=> x + 5 = 0
=> x = -5
Vậy Min A = 2 <=> x = -5
b.B = \(x^2-12x+37\)
\(=x^2-2.x.6+36+1\)
\(=\left(x-6\right)^2+1\ge1\forall x\)
Dấu " = " xảy ra <=> x - 6 = 0
=> x = 6
Vậy Min B = 1 <=> x = 6
c. \(x^2+x+7\)
\(=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{27}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)
Dấu " =" xảy ra <=> \(x+\dfrac{1}{2}=0\)
\(x=\dfrac{-1}{2}\)
Vậy Min C = \(\dfrac{27}{4}\Leftrightarrow x=\dfrac{-1}{2}\)

Ta có : 12x2 + 8x = 0
<=> 4x(3x + 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\3x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{2}{3}\end{cases}}\)
a, 4x(3x - 2) = 0
=> x=0 hoac x= 2/3
b, 2x2 + 10x - x -5 =0
<=> (x + 5)(2x-1) =0
=> x = -5 hoac x = 1/2

1)\(6x^2-20x+6=0\)
<=>\(6x^2-18x-2x+6=0\)
<=>6x(x-3)-2(x-3)=0
<=>(6x-2)(x-3)=0
<=>6x-2=0
hoặc x-3=0
<=>x=\(\frac{1}{3}\)
hoặc x=3
Vậy...
2)\(8x^2+10x-3=0\)
=>\(8x^2-2x+12x-3=0\)
<=>2x(4x-1)+3(4x-1)=0
<=>(2x+3)(4x-1)=0
<=>2x+3=0<=>x=\(\frac{3}{2}\)
hoặc 4x-1=0<=>x=\(\frac{1}{4}\)
Vậy ........
3)Phương trình tương đương: \(4x^2-2x+10x-5=0\)
<=> 2x(2x-1)+5(2x-1)=0
<=> (2x+5)(2x-1)=0
Giải ra các trường hợp là xong
4)Phương trình tương đương:\(x^2-10x+25-1=0\)
<=>\(\left(x-5\right)^2-1^2=0\)
<=>(x-5-1)(x-5+1)=0
<=>(x-6)(x-4)=0 Giải các TH nữa là xong
5)\(x^2-5x-24\)=0
<=>\(x^2-8x+3x-24=0\)
<=>x(x-8)+3(x-8)=0
<=>(x+3)(x-8)=0
Giải ra các nghiệm nữa là xong
6)Phương trình tương đương :\(x^4+6x^2+9-9x^2=0\)
<=> \(\left(x^2+3\right)^2-\left(3x\right)^2\)
<=> \(\left(x^2+3x+3\right)\left(x^2-3x+3\right)\)=0
Đến đây tự làm nhé
7)Phương trình tương đương :\(4x^4-12x^2+9-8=0\)
<=>\(\left(2x-3\right)^2-\sqrt{8}^2\)=0
<=>(2x-3-\(\sqrt{8}\))\(\left(2x-3+\sqrt{8}\right)\)=0
Đến đây dễ rồi

f) \(4x^2-12x+9=0\)
<=> \(\left(2x-3\right)^2\) = 0
<=> \(2x-3=0\)
<=> \(2x=3\) <=> \(x=\dfrac{3}{2}\)
Vậy ...............
g) \(3x^2+7x+2=0\)
<=> \(\left(3x^2+6x\right)+\left(x+2\right)=0\)
<=> \(3x\left(x+2\right)+\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(3x+1\right)=0\)
<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy ........................
h) \(x^2-4x+1=0\)
<=> \(\left(x^2-4x+4\right)-3=0\)
<=> \(\left(x-2\right)^2=3\)
<=> \(\left[{}\begin{matrix}x+2=\sqrt{3}\\x+2=-\sqrt{3}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}-2\\x=-\sqrt{3}-2\end{matrix}\right.\)
Vậy .........................
i) \(2x^2-6x+1=0\)
<=> \(2\left(x^2-3x+2,25\right)-3,5=0\)
<=> \(\left(x-1,5\right)^2=1,75\)
<=> \(\left[{}\begin{matrix}x-1,5=\sqrt{1,75}\\x-1,5=-\sqrt{1,75}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{1,75}+1,5\\x=-\sqrt{1,75}+1,5\end{matrix}\right.\)
Vậy ...................
j) \(3x^2+4x-4=0\)
<=> \(\left(3x^2+6x\right)-\left(2x+4\right)=0\)
<=> \(3x\left(x+2\right)-2\left(x+2\right)\) = 0
<=> \(\left(x+2\right)\left(3x-2\right)=0\)
<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ....................................
f) \(4x^2-12x+9=0\)
\(\Rightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy..
g) \(3x^2+7x+2=0\)
\(\Rightarrow3x^2+6x+x+2=0\)
\(\Rightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy..
h) \(x^2-4x+1=0\)
\(\Rightarrow x^2-4x+4-3=0\)
\(\Rightarrow\left(x-2\right)^2-3=0\)
\(\Rightarrow\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2-\sqrt{3}=0\\x-2+\sqrt{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
Vậy..
j) \(3x^2+4x-4=0\)
\(\Rightarrow3x^2+6x-2x-4=0\)
\(\Rightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..

1) <=> x2 - 4x - x2 + 8 = 0 <=> x2 - 4x + 8 = 0
Dễ thấy phương trình vô nghiệm vì x2 - 4x + 8 = ( x - 2 )2 + 4 > 0
2) <=> ( x - 1 )3 = 0 <=> x = 1
3) <=> ( x - 2 )3 = 0 <=> x = 2
4) <=> ( 2x - 1 )3 = 0 <=> x = 1/2
Phương trình đã cho là:
x² − 12x + 37 = 0
Đây là phương trình có dạng tổng quát ax² + bx + c = 0, với các hệ số:
Áp dụng Công thức nghiệm
Công thức nghiệm của phương trình bậc hai là:
x = [ -b ± √(b² − 4ac) ] / 2a
x = [ -(-12) ± √((-12)² − 4 * 1 * 37) ] / (2 * 1)
x = [ 12 ± √(144 − 148) ] / 2
x = [ 12 ± √(-4) ] / 2
Ta biết rằng √(-1) được định nghĩa là đơn vị ảo, ký hiệu là i.
Do đó, √(-4) = √(4 * -1) = √4 * √-1 = 2i.
x = (12 ± 2i) / 2
x = 12/2 ± 2i/2
x = 6 ± i
Vậy, phương trình có hai nghiệm phức là:
\(x^2-12x+37=0\)
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\)
Nếu \(a=1;b=-12;c=37\)
\(\Rightarrow\Delta=\left(-12\right)^2-4\cdot1\cdot37\)
\(\Delta=144-148\)
\(\Delta=-4\)
Mà \(\Delta<0\)
\(\rightarrow\) Phương trình vô nghiệm.