Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: 51x \(\ge0\Rightarrow x\ge0\)
Khi đó x + 1 > 0 ; x + 3 > 0 ;.... x + 99 > 0
=> |x + 1| + |x + 3| + ... + |x + 97| + |x + 99| = 51x
<=> x + 1 + x + 3 + ... x + 97 + x + 99 = 51x
<=> 50x + (1 + 3 + ... + 97 + 99) = 51x
=> x = 50.(99 + 1) : 2
= x = 50.50 = 2500 (tm)
Vậy x = 2500 là giá trị cần tìm
a) \(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}=4\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1+\frac{x-3}{97}-1+\frac{x-3}{96}-1=4-4\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\) )
Vậy x = 1
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=3\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1=3-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
=> x + 100 = 0
=> x = -100
c) \(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-4}{32}=6\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-4}{32}-3=6-6\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{32}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{49}+\frac{1}{32}\ne0\)
=> x - 100 = 0
=> x = 100
Chúc bạn học tốt
có người khác trả lời trước rồi nên chị ko trả lời đâu nhé em trai
Ta có :
\(\frac{x+1}{100}+\frac{x+2}{99}=\frac{x+3}{98}+\frac{x+4}{97}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{100}+1\right)+\left(\frac{x+2}{99}+1\right)=\left(\frac{x+3}{98}+1\right)+\left(\frac{x+4}{97}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+101}{100}+\frac{x+101}{99}=\frac{x+101}{98}+\frac{x+101}{97}\)
\(\Leftrightarrow\)\(\frac{x+101}{100}+\frac{x+101}{99}-\frac{x+101}{98}-\frac{x+101}{97}=0\)
\(\Leftrightarrow\)\(\left(x+101\right)\left(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\right)=0\)
Vì \(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\ne0\)
Nên \(x+101=0\)
\(\Rightarrow\)\(x=-101\)
Vậy \(x=-101\)
Chúc bạn học tốt ~
\(\left(\frac{x+1}{99}\right)+\left(\frac{x+2}{98}\right)+\left(\frac{x+3}{97}\right)=-3\)
\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=-3\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\approx0\)nên \(x+100=0\)
\(\Rightarrow x=-100\)
Vậy x = -100
Ta có :
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}=-3\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=-3+3\)
\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}\ne0\)
\(\Rightarrow\)\(x+100=0\)
\(\Rightarrow\)\(x=-100\)
Vậy \(x=-100\)
Chúc bạn học tốt ~
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-3}{97}+\frac{x-4}{96}+\frac{x-5}{95}=5\)
\(\Rightarrow\left(\frac{x-1}{99}-1\right)+\left(\frac{x-2}{98}-1\right)+\left(\frac{x-3}{97}-1\right)+\left(\frac{x-4}{96}-1\right)+\left(\frac{x-5}{95}-1\right)\)\(=5-1-1-1-1-1\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}+\frac{x-100}{97}+\frac{x-100}{96}+\frac{x-100}{95}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}\right)=0\)
Mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}+\frac{1}{95}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x=100
Chúc bạn học tốt
Ta có \(1\frac{1}{5}x+\frac{2}{3}x=-\frac{56}{125}\)
<=> \(\frac{6}{5}x+\frac{2}{3}x=-\frac{56}{125}\)
<=> \(\frac{28}{15}x=-\frac{56}{125}\)
<=> \(x=-\frac{2}{15}\)
b) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
<=> \(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=0\)
<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
<=> x + 100 = 0
<=> x = -100
Ta có: \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)=\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Kb vs cho tớ nha mn!
bạn ơi bạn có giải được 2 bài này ko
tìm x biết [x mũ 3+5].[x mũ 3 +10].[x mũ 3 +15].[x mũ 3 +30]<0
[x -5] tất cả mũ 4=[x -5] tất cả mũ 6 bn giải được mk tk luôn cho thanks bạn
Ta có 51x\(\ge0\), vì nó là tổng của 51 số có chứa dấu giá trị tuyệt đối
=> \(x\ge0\)
Giờ phá dấu giá trị tuyệt đối
Ta có \(x\ge0\) nên tổng của mỗi số hạng trong dấu giá trị tuyệt đối đều \(\ge0\)
=>(x+1)+(x+3)+...+(x+97)+(x+99)=51x
=>50x+ (1+3+...+97+99)=51x
=>50x+2500=51x
=>51x-50x=2500
=>x=2500
Vì |x+1|+|x+3|+.......+|x+97|+|x+99|\(\ge\)0
\(\Rightarrow\)51x\(\ge\)0 \(\Rightarrow\)x\(\ge\)0
Ta có:
|x+1|+|x+3|+.......+|x+97|+|x+99| = 51x
x+1+x+3+......+x+97+x+99 = 51x
50x+\(\left(99+1\right)\cdot50:2\)= 51x
\(\left(99+1\right)\cdot50:2\)= 51x - 50x
\(100\cdot25\)= x
x=2500