Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(100x+\left(1+2+3+4+...+100\right)=5750\)
Áp dụng công thức tính dãy số ta có
\(\left(100-1\right):1+1.\left(100+1\right):2=100.101:2=5050\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=700\)
\(\Rightarrow x=7\)
( x+x+x+....+x)+(1+2+3+4+.....+ 100)=5750
=(x.100)+(101.1):100:2=5750
=> (x.100)+5050=5750
=>x.100=700
=>x=7
(x+1)+(x+2)+(x+3)+...+(x+100)
=100.x+(1+2+3,..+100)
=100.x+100.101/2
=>
100x+101.50=5750
100x=5750-5050=700
x=7
\(x+1+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow x+1+x+2+x+3+...+x+100=5750\)
\(\Rightarrow100x+1+2+3+...+100=5750\)
\(\Rightarrow100x+\left[\left(\dfrac{100-1}{1}+1\right):2\right]\left(100+1\right)=5750\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=700\Rightarrow x=7\)
\(25-\left(30+x\right)=x-\left(123-67\right)\)
\(\Rightarrow25-30+x=x-123+67\)
\(\Rightarrow-5+x=x-56\)
\(\Rightarrow x\in\varnothing\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^6-\left(x-5\right)^4=0\)
\(\Rightarrow\left(x-5\right)^4\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^4=0\Rightarrow x=5\\\left(x-5\right)^2-1=0\Rightarrow\left(x-5\right)^2=1\Rightarrow x=6;4\end{matrix}\right.\)
\(\left(x^2+1\right)\left(x-3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+1>0\Rightarrow x^2>-1\\x-3< 0\Rightarrow x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+1< 0\Rightarrow x^2< -1\\x-3>0\Rightarrow x>3\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102/3
=> A = 343400
Lời giải:
$(x+1)+(x+2)+(x+3)+...+(x+100)=(1-x)+(2-x)+(3-x)+...+(100-x)$
$\underbrace{(x+x+...+x)}_{100}+(1+2+3+...+100)=(1+2+3+...+100)-\underbrace{(x+x+...+x)}_{100}$
$\Rightarrow 100x=-100x$
$\Rightarrow 200x=0$
$\Rightarrow x=0$
(x+1)+(x+2)+(x+3)+...+(x+100) =5750
100x + (1+2+3+...+100)=5750
100x+ 5050 = 5750
100x =700
x =7
chuc ban luon hoc gioi!
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(100x+\left(1+2+3+4+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=700:100\)
\(x=7\)