Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(x^4+2x^2+1=\left(x^2+1\right)^2\) mà \(x^2\ge0\Rightarrow x^2+1>0\Rightarrow\left(x^2+1\right)^2>0\)với mọi x.Nên x-3=0 .Từ đó suy ra x=3
\(x^2-11x-26=0\)
\(x^2-13x+2x-26=0\)
\(x.\left(x-13\right)+2.\left(x-13\right)=0\)
\(\left(x+2\right).\left(x-13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-13=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=13\end{cases}}\)
vậy...
P/S: lớp 7 sai sót mong thông cảm
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow x-2=0\) (Vì: \(x^2+4x+6>0\) )
\(\Leftrightarrow x=2\)
b) \(2x^3+x^2-6x=0\)
\(\Leftrightarrow x\left(2x^2+x-6\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+4x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+2\right)-3\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+2=0\\2x-3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-2\\x=\frac{3}{2}\end{array}\right.\)
c) \(4x^2+4xy+x^2-2x+1+y^2=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\begin{cases}2x+y=0\\x-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}y=-2\\x=1\end{cases}\)
a) (x-5)3-x+5=0
⇔(x-5)3-(x-5)=0
⇔ (x-5)[(x-5)2-1]=0
⇔ (x-5)(x-5-1)(x-5+1)=0
⇔ (x-5)(x-6)(x-4)=0
⇔ \(\left[{}\begin{matrix}x-5=0\\x-6=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
vậy ...
b) (x2+1)(x-2)+2x=4
⇔ (x2+1)(x-2)+2x-4=0
⇔ (x2+1)(x-2)+(2x-4)=0
⇔ (x2+1)(x-2)+2(x-2)=0
⇔(x-2)(x2+1+2)=0
⇔ (x-2)(x2+3)=0
⇔\(\left[{}\begin{matrix}x-2=0\\x^2+3=0\end{matrix}\right.\left[{}\begin{matrix}x=2\\x^2=-3\left(voli\right)\end{matrix}\right.\)
vậy
B1.a/ (x-2)(x^2+2x+2)
b/ (x+1)(x+5)(x+2)
c/ (x+1)(x^2+2x+4)
B2.
1a) x3 - 2x - 4 = 0
<=> (x3 - 4x) + (2x - 4) = 0
<=> x(x2 - 4) + 2(x - 2) = 0
<=> x(x - 2)(x + 2) + 2(x - 2) = 0
<=> (x - 2)(x2 + 2x + 2) = 0
<=> x - 2 = 0 (vì x2 + 2x + 2 \(\ne\)0)
<=> x = 2
Vậy S = {2}
b) x3 + 8x2 + 17x + 10 = 0
<=> (x3 + 5x2) + (3x2 + 15x) + (2x + 10) = 0
<=> x2(x + 5) + 3x(x + 5) + 2(x + 5) = 0
<=> (x2 + 3x + 2)(x + 5) = 0
<=> (x2 + x + 2x + 2)(x + 5) = 0
<=> (x + 1)(x + 2)(x + 5) = 0
<=> x + 1 = 0 hoặc x + 2 = 0 hoặc x + 5 = 0
<=> x = -1 hoặc x = -2 hoặc x = -5
Vậy S = {-1; -2; -5}
c) x3 + 3x2 + 6x + 4 = 0
<=> (x3 + x2) + (2x2 + 2x) + (4x + 4) = 0
<=> x2(x + 1) + 2x(x + 1) + 4(x + 2) = 0
<=> (x2 + 2x + 4)(x + 2) = 0
<=> x + 2 = 0
<=> x = -2
Vậy S = {-2}
a) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]\)
\(=\left(x^2-1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=\left(x^2-1\right)\left(-3x^2\right)\)
\(=-3x^4+3x^2=3\left(x^2-x^4\right)=3\left(x-x^2\right)\left(x+x^2\right)=\left(3x-3x^2\right)\left(x+x^2\right).\)
b)\(\left(x^4-3x^2+9\right)\left(x^2+3-\left(3+x^2\right)\right)^3=\left(x^4-3x^2+9\right).0^3=0\)
c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=\left(x-3\right)^3-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^3-\left[\left(x-3\right)^3+3.x.3.\left(x-3\right)\right]+6x^2+12x+6\)
\(=6x^2+12x+6-9x\left(x-3\right)=6x^2+12x+6-9x^2+27x\)
\(=39x-3x^2+6=3\left(13x-x^2+2\right).\)
\(\dfrac{x+1}{x-1}+\dfrac{x-2}{x+2}+\dfrac{x-3}{x+3}+\dfrac{x+4}{x-4}=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x-4\right)+\left(x-2\right)\left(x-1\right)\left(x+3\right)\left(x-4\right)+\left(x-3\right)\left(x-1\right)\left(x+2\right)\left(x-4\right)+\left(x+4\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow4x^4+20x-96=0\)
\(\Leftrightarrow4\left(x^4+5x-24\right)=0\)
\(\Leftrightarrow x^4+5x-24=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2,45...\\x=1,94...\end{matrix}\right.\)
Vậy: \(S=\left\{-2,45...;1,94...\right\}\)
còn cách khác ko bn