Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{27}x^3-8y^6\)
\(=\left(\frac{1}{3}x\right)^3-\left(2y^2\right)^3\)
\(=\left(\frac{1}{3}x-2y^2\right)\left(\frac{1}{9}x^2+\frac{2}{3}xy^2+4y^4\right)\)
b) Ta có: \(t^2x^6-\frac{4}{9}y^4\)
\(=\left(tx^3\right)^2-\left(\frac{2}{3}y^2\right)^2\)
\(=\left(tx^3-\frac{2}{3}y^2\right)\left(tx^3+\frac{2}{3}y^2\right)\)
c) Ta có: \(64x^6+\frac{1}{27}y^3\)
\(=\left(4x^2\right)^3+\left(\frac{1}{3}y\right)^3\)
\(=\left(4x^2+\frac{1}{3}y\right)\left(8x^4-\frac{4}{3}x^2y+\frac{1}{9}y^2\right)\)
d) Ta có: \(\frac{1}{16}a^2x^6-y^4\)
\(=\left(\frac{1}{4}ax^3\right)^2-\left(y^2\right)^2\)
\(=\left(\frac{1}{4}ax^3-y^2\right)\left(\frac{1}{4}ax^3+y^2\right)\)
e) Ta có: \(m^4x^6-\frac{4}{25}y^2\)
\(=\left(m^2x^3\right)^2-\left(\frac{2}{5}y\right)^2\)
\(=\left(m^2x^3-\frac{2}{5}y\right)\left(m^2x^3+\frac{2}{5}y\right)\)
f) Ta có: \(27x^6-\frac{1}{64}y^3\)
\(=\left(3x^2\right)^3-\left(\frac{1}{4}y\right)^3\)
\(=\left(3x^2-\frac{1}{4}y\right)\left(9x^4+\frac{3}{4}x^2y+\frac{1}{16}y^2\right)\)
a)=>\(\left(2x+1\right)^2=\frac{1}{9}\)
\(=>\left(2x+1\right)^2=\frac{1}{3^2}\)
\(=>2x+1=\frac{1}{3}\)
\(=>2x=\frac{1}{3}-1\)
\(=>2x=\frac{-2}{3}\)
\(=>x=\frac{-2}{3}:2\)
\(=>x=\frac{-1}{3}\)
Vậy x = \(-\frac{1}{3}\)
b)\(=>\left(x-2\right)^3=27\)
\(=\left(x-2\right)^3=3^3\)
\(=>x-2=3\)
\(=>x=3+2\)
\(=>x=5\)
Vậy x = 5
c)=>x.x-x=0
TH1:\(\hept{\begin{cases}x.x=0\\x=0\end{cases}}\)\(=>\hept{\begin{cases}x=0\\x=0\end{cases}}\)
TH2:\(x.x=1.x=>x=1\)
Vậy \(x\in\left\{0;1\right\}\)
d)\(x^4=27.x\)
\(=>x^4-27x=0\)
\(=>x^4-\left[\left(3\right)^3.x\right]=0\)
\(=>x^3.x-3^3.x=0\)
\(=>x.\left(x^3-3^3\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x^3-3^3=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x^3=3^3\end{cases}=>\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
X khong thể bằng (-3) được
Vậy x \(\in\){0;3}
a) Ta có: \(\left(2x+1\right)^2-\frac{1}{9}=0\)
\(\left(2x+1\right)^2=\frac{1}{9}\)
mà \(\frac{1}{9}=\left(\frac{1}{3}\right)^2=\left(-\frac{1}{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+1=\frac{1}{3}\\2x+1=-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-\frac{2}{3}\\2x=-\frac{4}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{3};-\frac{2}{3}\right\}\)
b) (x-2)3 + 27 = 0
(x-2)3 = -27
mà -27=(-3)3
=> x-2=-3
=> x= -1
c)Ta có: x2 - x = 0
x . (x-1) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy \(x\in\left\{0;1\right\}\)
Bài 1:
a) Ta có: \(x=7\Rightarrow8=x+1\)
Thay vào ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
\(A=7-5=2\)
Vậy khi x = 7 thì A = 2
\(2^x+2^{x+3}=144\)
\(2^x+2^x.2^3=144\)
\(2.2^x.8=144\)
\(2.2^{ }^x=\frac{144}{8}=18\)
\(2^x=\frac{18}{2}=9\)
Mà \(2^3=9\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
~ Học tốt ~
\(2^x=68\)
Câu cuối của mk bỏ ik nhé, mk quên chưa xóa
Bài 1:
Ta có:
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=a^2.\left(c^2+d^2\right)+b^2.\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)=VT\)
\(\rightarrow\)đpcm
Chúc bạn học tốt!!!
Bài 1:
\(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)
\(\Rightarrowđpcm\)
Bài 2
Đặt
\(A=x^3+9x^2+27x+27=\left(x+3\right)^3\)
Thay x = 97
\(\Leftrightarrow A=100^3=1000000\)
Vậy A = 1000000 khi x = 97
\(x^{13}=27.x^{10}\)
\(x^{13}:x^{10}=27\)
\(x^3=27=3^3\)
\(\Rightarrow x=3\)