K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)

<=>\(\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)

<=>\(\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)

<=>\(\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)

vì 1/2009+1/2008-1/3-1/4=0

=>x+2010=0

=>x=-2010

12 tháng 2 2018

Giải:

\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}=\dfrac{x+2007}{3}+\dfrac{x+2006}{4}\)

\(\Leftrightarrow\dfrac{x+1}{2009}+1+\dfrac{x+2}{2008}+1=\dfrac{x+2007}{3}+1+\dfrac{x+2006}{4}+1\)

\(\Leftrightarrow\dfrac{x+1+2009}{2009}+\dfrac{x+2+2008}{2008}=\dfrac{x+2007+3}{3}+\dfrac{x+2006+4}{4}\)

\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}=\dfrac{x+2010}{3}+\dfrac{x+2010}{4}\)

\(\Leftrightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}-\dfrac{x+2010}{3}-\dfrac{x+2010}{4}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\)

Nên \(x+2010=0\)

\(\Leftrightarrow x=-2010\)

Vậy ...

15 tháng 12 2021

\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)

Vậy PT có nghiệm \(x=2008\)

7 tháng 6 2017

Xét BĐT sau với a,b >0 : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}=2\) \(\). Dấu "=" xảy ra khi a=b 

Ta có : \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) 

\(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\) (1) 

Áp dụng BĐT vừa c.m , ta suy ra : 

\(\hept{\begin{cases}x^2+\frac{1}{x^2}\ge2\\y^2+\frac{1}{y^2}\ge2\\z^2+\frac{1}{z^2}\ge2\end{cases}}\)  . Dấu "=" xảy ra khi x=y=z=1 (2) 

Từ (1) và (2) => \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\)\(\ge2+1+2=6\)

Dấu "=" xảy ra khi x=y=z=1

Thay vào B , ta được : 

B = 2+3+1 =6

7 tháng 6 2017

nhầm chỗ dưới kia phải là 2+2+2 = 6 nha ! sorry

11 tháng 1 2019

Ta có:

\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)

Dấu = xảy ra khi \(a=b=1\)

\(\Rightarrow S=a^{2009}+b^{2009}=2\)