Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Do đó :
\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)
\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)
\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)
Suy ra :
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(P=8\)
Đề hơi sai
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vậy theo đề của mình nhé !
* trước tiên ta xét trường hợp x + y + z = 0, ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=0\Rightarrow x=y=z=0\)
* xét x + y + z ≠ 0, ta có :
Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{x}{x+y-3}=\dfrac{x+y+z}{y+z+x+z+x+y}=\)
\(\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
⇒ x + y + z = 1/2 và:
+ 2x = y + z + 1 = 1/2 - x + 1 ⇒ x = 1/2
+ 2y = x + z + 2 = 1/2 - y + 2 ⇒ y = 1/2
+ z = 1/2 - (x + y) = 1/2 - 1 = -1/2
Vậy có cặp (x,y,z) thỏa mãn là : (0, 0, 0) và (1/2,1/2,-1/2)
Ta có x - y cùng tính chẵn lẻ với x - y
y - z cùng tính chẵn lẽ với y - z
z - x cùng tính chẵn lẻ với z - x
=> / x - y / + / y - z / + / z - x / cùng tính chẵn lẻ với ( x - y ) + ( y - z ) + ( z - x )
x - y + y - z + z - x = ( x - x ) + ( y - y ) + ( z - z ) = 0 là 1 số chẵn
= > / x - y / + / y - z / + / z - x / là 1 số chẵn
Vậy không có x . y . z thoả mãn đề bài