Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
a: \(x^3+y^3+xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)
\(=1-3xy+xy=-2xy+1\)
b: \(x^3-y^3-xy\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\)
\(=1+3xy-xy=2xy+1\)
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
1. \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
2. \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy-2yz+2xz\)
3. \(\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2yz-2zx\)
4. \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy+2yz-2zx\)
5./6. Kết hợp từ trên
a) Vì x + y = 1 => ( x + y )3 = 1
=> x3 + 3x2y + 3xy2 + y3 = 1
=> x3 + y3 + 3xy ( x + y ) = 1
=> x3 + y3 +3xy = 1 (do x+y=1)
b) x-y=1 => (x-y)3=1
=> x3 - 3x2y + 3xy2 -y3 = 1
=> x3 -y3 - 3xy (x - y) = 1
=> x3 - y3 -3xy =1 (do x-y=1)
1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)
Dấu "=" xảy ra khi x = 13/2
Vậy Max P(x) = 8217/4 tại x = 13/2
2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)
3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)
Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)
a, x+y=4
=>(x+y)2 = 42=16
<=>x2+2xy+y2=16
<=>x2+y2= 16-6=10
<=>(x2+y2)2 = 100
<=> x4+2x2y2+y4 = 100
<=> x4+y4 +2.3.3=100
<=> x4+y4 = 100 -18 = 82
=> (x4+y4)(x+y) = 328
<=> x5 +x4y + xy4 + y5 = 328
<=> x5 +xy(x3+y3) + y5 = 328
Mặt khác: (x+y)3=64
=> x3+y3+3xy(x+y)=64
<=>x3+y3 = 64-36=28
=> x5+y5 = 328 -84=244
a ) \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=4\left(a-b-2c\right)\left(a-b+2c\right)\)
b ) \(x^2-25+y^2+2xy\)
\(=\left(x^2+2xy+y^2\right)-25\)
\(=\left(x+y\right)^2-5^2\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
c )
\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x^2-9\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
d )\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-16\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
16 = 4 ‧ 4 = 8 ‧ 2
Mà 4 - 4 = 0 , 8 - 2 = 6
x = 8 , y = 2
\(x^3-y^3=8^3-2^3=512-8=504\)
\(\Rightarrow x^3-y^3=504\)
x - y = 6
=> ( x - y )2 = 36
=> x2 - 2xy + y2 = 36
=> x2 + y2 - 32 = 36
=> x2 + y2 = 68
Ta có x3 - y3 = ( x - y )( x2 + xy + y2 )
= 6.( 68 + 16 )
= 6.84 = 504