
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(2x-1)*(y-1)=10
suy ra 2x-1=10/(y-1)
suy ra (y-1) thuộc ước của 10.ta có bảng sau:
y-1 |
1 |
-1 |
2 |
-2 |
5 |
-5 |
10 |
-10 |
y |
2 |
0 |
3 |
-1 |
6 |
-4 |
11 |
-9 |
x |
3 |
-4,5 |
13/6 |
-2 |
1/5 |
-0,5 |
1 |
0 |
Kết quả |
Nhận |
Loại |
Loại |
Nhận |
Loại |
Loại |
Nhận |
nhận |
vậy...........................

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

\(A=6xy\left(xy-y^2\right)-8x^2\left(x-y\right)^2+5y\left(x^2-xy\right)\)
\(=6xy^2\left(x-y\right)-8x^2\left(x-y\right)\left(x-y\right)+5xy\left(x-y\right)\)
\(=x\left(x-y\right)\left(6y^2-8x\left(x-y\right)+5y\right)\)
\(=x\left(x-y\right)\left(6y^2-8x^2+8xy+5y\right)\)
\(=x\left(x-y\right)\left[2\left(3y+2x\right)\left(y-2x\right)+16xy+5y\right]\)
Thay x=1/2; y =2 ta được
\(A=\frac{1}{2}\left(\frac{1}{2}-2\right)\left[0+16\cdot\frac{1}{2}\cdot2+5\cdot2\right]=-\frac{1}{2}\cdot\frac{3}{2}\cdot26=-\frac{39}{2}\).
6xy ( xy - y2 ) - 8x2 ( x - y )2 + 5y ( x2 - xy )
= 6x2y2 - 6xy3 - 8x3 + 8x2y + 5yx2 - 5xy2
= xy ( 6xy - 6y2 + 8x + 5x - 5y ) - 8x3
Thay x= \(\frac{1}{2}\) ; y = 2
= 6 - 6.4 + 8. \(\frac{1}{2}\) + 5. \(\frac{1}{2}\) - 5.2 - 8.8
=> 6 - 24 + 4 + 2,5 - 10 - 64
= - 85,5

Tham khảo:
a + b = m
a - b = n
=> a = (m + n)/2
b = (m - n)/2
Có: a.b = (m + n)/2.(m - n)/2
= (m^2 - n^2)/4
=> a^3 - b^3 = (m + n)^3/2^3 - (m - n)^2/2^3
= (m + n)^3/8 - (m - n)^3/8
= [(m + n)^3 - (m - n)^3]/8
= [(m + n - m + n)((m + n)^2 + (m + n)(m - n) + (m - n)^2)]/8
= [n(m^2 + n^2 + 2mn + m^2 - n^2 + m^2 + n^2 - 2mn)]/8
= n(3m^2 + 2n^2)/8
= m^2n − (m^2−n^2)/4 .n

a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)

Ta có: \(x+y=5\)
\(\Rightarrow\left(x+y\right)^2=25\)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+4+y^2=25\)
\(\Leftrightarrow x^2+y^2=21\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2+y^2\right)-xy\left(x+y\right)\)
\(=105-10\)
\(=95\)
\(A=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.2.5=95\)
\(\hept{\begin{cases}x+y=3\\xy=-10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}hoac\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)
=7*2=14
=-7*2=-14.Vậy...