Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì \(\left|x-y-5\right|\ge0\forall x;y;2019\left|y-3\right|^{2020}\ge0\forall y\)
\(\Rightarrow\left|x-y-5\right|+2019\left|y-3\right|^{2020}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-y-5\right|=0\\2019\left|y-3\right|^{2020}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y-5=0\\y-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=5\\y=3\end{cases}}\)
b. \(2\left(x-5\right)^4\ge0\forall x;5\left|2y-7\right|^5\ge0\forall y\)
\(\Rightarrow2\left(x-5\right)^4+5\left|2y-7\right|^5\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}2\left(x-5\right)^4=0\\5\left|2y-7\right|^5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-5=0\\2y-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\y=\frac{7}{2}\end{cases}}\)
Bài 1: Tính
a) \(1:\) \(\frac{99}{100}:\frac{98}{97}\)\(:\frac{97}{96}:...:\)\(\frac{2}{3}:\frac{1}{2}\)
b) \(\left(\frac{7}{20}+\frac{11}{15}-\frac{15}{12}\right)\)\(:\)\(\left(\frac{11}{20}-\frac{26}{45}\right)\)
c) \(\frac{5-\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}{8-\frac{8}{3}+\frac{8}{9}-\frac{8}{27}}\)\(:\)\(\frac{15-\frac{15}{11}+\frac{15}{121}}{16-\frac{16}{11}+\frac{16}{11}}\)
d) \(\frac{\frac{1}{9}-\frac{5}{6}-4}{\frac{7}{12}-\frac{1}{36}-10}\)
Bài 2: Tìm x:
a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right)\)\(:\)\(\left(2+\frac{1}{6}-\frac{1}{4}\right)\)\(=\frac{7}{46}\)
b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)
Bài 3:
Tìm tổng các số nghịch đảo của các số 10; 40; 88; 154; 238; 340.
Bài 4:
Một ô tô chạy trong \(\frac{4}{5}\)giờ được 32 km. Ô tô chạy quãng đường AB mất \(3\frac{1}{2}\)giờ. Tính vận tốc của ô tô và độ dài quãng đường AB.
Bài 5:
Một người đi từ A đến B mất 45 phút trong khi đó người thứ 2 đi từ B về A mất 30 phút. Nếu hai người cùng khởi hành thì sau bao nhiêu phút thì gặp nhau?
Bài 6:
Cho a; b; c; \(\in\)N*. Chứng tỏ rằng \(\frac{a+b}{c}\)\(+\)\(\frac{b+c}{a}+\frac{c+a}{b}\)\(\ge\)b
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1)(2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x-y+z}{16-12+15}=\frac{33}{19}\)
Sau đó bạn tự tìm x, y, z là đc
Học tốt nhé :)
Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\) => \(\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
=> \(\frac{5x-3}{14}=\frac{4}{y}\) => \(\left(5x-3\right)y=56\)
=> 5x - 3; y là ước của 56
5x-3 | 1 | 2 | 4 | 7 | 8 | 14 | 28 | 56 | -1 | -2 | -4 | -7 | -8 | -14 | -28 | -56 |
y | 56 | 28 | 14 | 8 | 7 | 4 | 2 | 1 | -56 | -28 | -14 | -8 | -7 | -4 | -2 | -1 |
x | 4/5 | 1 | 7/5 | 2 | 11/5 | 17/5 | 31/5 | 59/5 | 2/5 | 1/5 | -1/5 | -4/5 | -1 | -11/5 | -5 | -53/5 |
Vì \(x,y\in Z\) => \(\left(x,y\right)\in\left\{\left(1;28\right),\left(2;8\right),\left(-5;-2\right)\right\}\)
Vậy ....
Study well ! >_<
\(\frac{xy-12}{3y}=\frac{1}{5}\)
\(5xy-60=3y\)
\(5xy-3y=60\)
\(y.\left(5x-3\right)=60\)
Lập bảng tính
a,x/2=y/5
<=> 2x/4=y/5=2x+y/4+5=18/9=2
+,x/2=2 => x=4
+, y/5=2 => y=10
g, x/2=y/5
đặt x/2=y/5=k
=> x=2k ; y=5k
ta có 2k.5k=90
k2.10=90
k2=9
=> k=3 k=-3
+, x/2=2=> x=4 x/2=-2 => x=-4
+, y/5=2 => y=10 y/5=-2 => y=-10
CÁC Ý SAU BN LÀM NỐT NHÉ DỄ MÀ
a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)
\(\Rightarrow x=4;y=10\)
mấy bài còn lại tương tự
a) \(\frac{4}{7}=\frac{12}{21}=\frac{28}{49}=\frac{52}{91}\)
b) \(\frac{4}{5}=\frac{12}{15}=\frac{16}{20}=\frac{8\cdot\left(16-15\right)}{10}\)
=> x,y,y phù hợp vs từng vị trí
hok tốt
x+2y/x+y = 2020/2019
=> (x + 2y)2019 = 2020(x + y)
=> 2019x + 4038y = 2020x + 2020y
=> 4038y - 2020y = 2020x - 2019x
=> 2018y = x vì x;y nhỏ nhất và x;y là stn khác 0
=> y = 1 => x = 2018.1 = 2018
vậy x = 2018; y = 1
\(\frac{x+2y}{x+y}=\frac{2020}{2019}\)
\(\Rightarrow2019\left(x+2y\right)=2020\left(x+y\right)\)
\(\Rightarrow2019x+4038y=2020x+2020y\)
\(\Rightarrow2019x-2020x=2020y-4038y\)
\(\Rightarrow-1=-2018y\)
\(\Rightarrow y=\frac{1}{2018}\)
Vậy ko có STN thỏa mãn