K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021
Hình như là =4
14 tháng 10 2021

x =0

 hình như thế

8 tháng 10 2020

Phân tích đa thức thành nhân tử ?

Ta có: \(P=\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)

Đặt \(x^2+4x+8=y\)

Khi đó: 

\(P=y^2+3xy+2x^2\)

\(P=\left(y^2+xy\right)+\left(2xy+2x^2\right)\)

\(P=y\left(x+y\right)+2x\left(x+y\right)\)

\(P=\left(x+y\right)\left(2x+y\right)\)

\(P=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

\(P=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)

2 tháng 8 2021

a, \(x^2-4-3\left(x-2\right)=\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=\left(x-1\right)\left(x-2\right)\)

b, \(x^2-xy+5y-25=\left(x-5\right)\left(x+5\right)-y\left(x-5\right)=\left(x+5-y\right)\left(x-5\right)\)

c, \(x^3+x^2-2x-8=\left(x-2\right)\left(x^2+2x+4\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+3x+4\right)\)

d, \(x^3-4x^2-8x+8=\left(x+2\right)\left(x^2-2x+4\right)-4x\left(x+2\right)=\left(x^2-6x+4\right)\left(x+2\right)\)

2 tháng 8 2021

Trả lời:

1, x2 - 4 - 3 ( x - 2 )

= ( x2 - 4 ) - 3 ( x - 2 )

= ( x - 2 ) ( x + 2 ) - 3 ( x - 2 )

= ( x - 2 ) ( x + 2 - 3 )

= ( x - 2 ) ( x - 1 )

2, x2 - xy + 5y - 25

= ( x2 - 25 ) - ( xy - 5y )

= ( x - 5 ) ( x + 5 ) - y ( x - 5 )

= ( x - 5 ) ( x + 5 - y )

3, x3 + x2 - 2x - 8

= ( x3 - 8 ) + ( x2 - 2x )

= ( x - 2 ) ( x2 + 2x + 4 ) + x ( x - 2 )

= ( x - 2 ) ( x2 + 2x + 4 + x )

= ( x - 2 ) ( x2 + 3x + 4 )

4, x3 - 4x2 - 8x + 8 

= ( x3 + 8 ) - ( 4x2 + 8x )

= ( x + 2 ) ( x2 - 2x + 4 ) - 4x ( x + 2 )

= ( x + 2 ) ( x2 - 2x + 4 - 4x )

= ( x + 2 ) ( x2 - 6x + 4 )

1 tháng 8 2021

xin lỗi em lớp 3 :>>>>

1 tháng 8 2021

𝑥2−3𝑥+2

(x-5)^2

k nhé tó k lại

13 tháng 5 2018

a)<=>

A,=(x+y)(x-y)=x^2-y^2

x=(-1/2)^5:(1/2)^4=-1/2

x^2=1/4

y=8^2/(-2)^5=-2

y^2=4

A=1/4-4=-15/4

17 tháng 5 2018
https://i.imgur.com/ZAuiaWv.jpg
7 tháng 8 2018

a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)

\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)

\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)

\(=2^4.5+2-5^2\)

\(=57\)

b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)

\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)

\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)

c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)

\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)

\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)