K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

Giả sử tồn tại n để 2n -1 =a2

\(\Rightarrow a\)lẻ. Khi đó: a- 1 = 2n - 2

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)=2\left(2^{n-1}-1\right)\)

Vì a lẻ \(\Rightarrow a=2k+1\Rightarrow2k\left(2k+2\right)=2\left(2^{n-1}-1\right)\Rightarrow4k\left(k+1\right)=2\left(2^{n-1}-1\right)\)(vô lý)

Vậy với mọi n thì 2n-1 không là số chính phương

9 tháng 6 2017

phải có điều kiện \(n>1\)nữa

27 tháng 5 2019

\(\sqrt{18}-2\sqrt{2}-\frac{7}{\sqrt{2}}\)

Như vậy á hả?

=\(-\frac{5\sqrt{2}}{2}\)

28 tháng 5 2019

\(\sqrt{18}-2\sqrt{2}-\frac{7}{\sqrt{2}}\)

=\(\sqrt{9.2}-2\sqrt{2}-\frac{7}{\sqrt{2}}\)

=\(3\sqrt{2}-2\sqrt{2}-\frac{7}{\sqrt{2}}\)

=6-4-7(quy đồng nhân với căn 2)

=-5

cho cái tick nha(tuy mk tính ra khác máy nhưng xem lại vẫn thấy đung,tìm hộ mk chỗ sai nh)

a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)

b) \(x^2+1-\dfrac{41}{25}=x^2-\dfrac{16}{25}=\left(x-\dfrac{4}{5}\right)\left(x+\dfrac{4}{5}\right)\)

21 tháng 9 2021

\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-4}-\dfrac{x+12\sqrt{x}}{x-16}\left(x\ge0;x\ne16\right)\\ A=\dfrac{2\sqrt{x}\left(\sqrt{x}+4\right)-x-12\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\\ A=\dfrac{2x+8\sqrt{x}-x-12\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+4}\)

20 tháng 7 2021

\(\sqrt{9.\left(x-1\right)^2}-12=0\)

=> 3.(x - 1) - 12 = 0

=> 3x - 15 = 0

=> 3x = 15

=> x = 5

b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)

\(\Rightarrow\sqrt{3-x}=8\)

=> 3 - x = 64

=> x = -61