Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^3+5x^2+6x-5x^2-25x-30\)
\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
Ta có: x3 - 19x - 30
= (x3 + 8) - (19x + 38)
= (x + 2)(x2 + 2x + 4) - 19(x + 2)
= (x + 2)(x2 + 2x + 4 - 19)
= (x + 2)(x2 + 2x - 15)
= (x + 2)(x2 + 5x - 3x - 15)
= (x + 2)[x(x + 5) - 3(x + 5)]
= (x + 2)(x - 3)(x + 5)
x3-19x+30=\(x^3-3x^2+3x^2-9x-10x+30\)
=\(x^2\left(x-3\right)+x\left(x-3\right)-10\left(x-3\right)\)
=\(\left(x-3\right)\left(x^2+x-10\right)\)
\(x^3-19x-30\)
\(=x^3+5x^2+6x-5x^2-25x-30\)
\(=x\left(x^2+5x+6\right)-5\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
x^3-19x-30
=x^3-25x+6x-30
=x(x^2-25)+6(x-5)
=x(x+5)(x-5)+6(x-5)
=(x-5)(x^2+5x+6)
=(x-5)(x^2+2x+3x+6)
=(x-5)[x(x+2)+3(x+2)]
=(x-5)(x+2)(x+3)
\(x^3-19x-30=x^3+2x^2-2x^2-4x-15x-30\)
\(=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x^2-2x-15\right)\left(x+2\right)\)
\(=\left[x^2-5x+3x-15\right]\left(x+2\right)\)
\(=\left[x\left(x-5\right)+3\left(x-5\right)\right]\left(x+2\right)\)
\(=\left(x+3\right)\left(x-5\right)\left(x+2\right)\)
\(x^3-19x-30=\left(x^2-2x-15\right)\left(x+2\right)=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
x3 - 19x - 30
Để thuận tiện hơn ta xài Bézout nhé :3
Thử với x = 5 ta có : 53 - 19.5 - 30 = 0
Vậy x = 5 là nghiệm của đa thức. Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 5
Thực hiện phép chia x3 - 19x - 30 cho x - 5 ta được x2 + 5x + 6
=> x3 - 19x - 30 = ( x - 5 )( x2 + 5x + 6 )
Lại có x2 + 5x + 6 = x2 + 2x + 3x + 6 = x( x + 2 ) + 3( x + 2 ) = ( x + 2 )( x + 3 )
=> x3 - 19x - 30 = ( x - 5 )( x + 2 )( x + 3 )