Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3-5x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Vậy: S={0;2;3}
\(x^3-5x^2+6x=0\)
\(\Leftrightarrow x^3-2x^2-3x^2+6x=0\)
\(\Leftrightarrow x^2\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
\(S=\left\{0,2,3\right\}\)
\(PT\Leftrightarrow2022x^2+2022x-2021x-2021=0\)
\(\Leftrightarrow2022x\left(x+1\right)-2021\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2022x-2021\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2022x-2021=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{2021}{2022}\end{matrix}\right.\)
Vậy: \(S=\left\{-1;\dfrac{2021}{2022}\right\}\)
\(\dfrac{x+3}{x+2}+\dfrac{x}{2-x}=\dfrac{5x}{x^2-4}\)
\(\Leftrightarrow\dfrac{x+3}{x+2}-\dfrac{x}{x-2}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x+2\ne0\\x-2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)
Ta có : \(\dfrac{x+3}{x+2}-\dfrac{x}{x-2}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x}{\left(x-2\right)\left(x+2\right)}\)
`=> x^2 -2x +3x-6 - x^2 -2x -5x=0`
`<=>-6x -6=0`
`<=>-6x=6`
`<=>x=-1(t/m)`
=>(x+3)(x-2)-x(x+2)=5x
=>x^2+x-6-x^2-2x=5x
=>5x=-x-6
=>6x=-6
=>x=-1
`a)(2x-1)^2-0,25=0`
`<=>(2x-1-0,5)(2x-1+0,5)=0`
`<=>(2x-1,5)(2x-0,5)=0`
`<=>[(x=0,75)(x=0,25):}`
`b)x^2+9=6x`
`<=>(x-3)^2=0`
`<=>x-3=0`
`<=>x=3`
`c)(x^2-4)-3x-6=0`
`<=>(x-2)(x+2)-3(x+2)=0`
`<=>(x+2)(x-2-3)=0`
`<=>(x+2)(x-5)=0`
`<=>[(x=-2),(x=5):}`
a: =>(2x-1-0,5)(2x-1+0,5)=0
=>(2x-1,5)(2x-0,5)=0
=>x=0,25 hoặc x=0,75
b: =>x^2-6x+9=0
=>(x-3)^2=0
=>x-3=0
=>x=3
c: =>(x-2)(x+2)-3(x+2)=0
=>(x+2)(x-5)=0
=>x=5 hoặc x=-2
\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\):
\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)
PT \(\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}+1=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{x+1}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow x=1;x=2;x=-\frac{2}{3}\)
Cả 3 giá trị trên đều thỏa mãn ĐKXĐ
Vậy PT đã cho có tập nghiêm : \(S=\left\{1;2;-\frac{2}{3}\right\}\)
Chúc bạn học tốt !!!
ta có :
\(x^2-5x+6=x^2-3x-2x+6=\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)vậy phương trình có hai nghiệm x=2 hoặc x =3