Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{15^8.27^2.2^{24}}{6^{14}.10^9}=\frac{3^8.5^8.(3^3)^2.2^{24}}{2^{14}.3^{14}.2^9.5^9}$
$=\frac{3^8.5^8.3^6.2^{24}}{2^{14}.3^{14}.2^9.5^9}$
$=\frac{3^{14}.5&8.2^{24}}{2^{23}.3^{14}.5^9}=\frac{5^8.2^{24}}{2^{23}.5^9}$
$=\frac{2}{5}$
Bạn lưu ý lần sau ghi đầy đủ cả yêu cầu đề ra nhé. Và nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hình dung đề dễ hơn.
\(a)x+\left(-5\right)=-14\)
\(\Leftrightarrow x=-14-\left(-5\right)\)
\(\Leftrightarrow x=-14+5\)
\(\Leftrightarrow x=-9\)
\(b)-x+7=-23\)
\(\Leftrightarrow-x=-23+ \left(-7\right)\)
\(\Leftrightarrow-x=-30\)
\(\Leftrightarrow x=30\)
\(c)112-x=\left(-3\right).\left(-15\right)\)
\(\Leftrightarrow112-x=45\)
\(\Leftrightarrow x=112-45\)
\(\Leftrightarrow x=67\)
\(d)\left(x-15\right)-27=5^5:5^3\)
\(\Leftrightarrow\left(x-15\right)-27=5^2\)
\(\Leftrightarrow\left(x-15\right)-27=25\)
\(\Leftrightarrow x-15=52\)
\(\Leftrightarrow x=67\)
\(e)\left(2x+1\right)^2=81\)
\(\Leftrightarrow\left(2x+1\right)^2=9^2\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
\(f)(x-5^3)=-27\)
\(f)(x-5^3)=-9^3\)
\(\Leftrightarrow x-5=-9\)
\(\Leftrightarrow x=-4\)
P/s: Bạn tự kết luận.
333 x 910 x 814
= 333 x (32)10 x (23)14
= 333 x 320 x 242
= 353 x 242
= (3 x 2)42 x 311
= 311x 642
\(\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{29}\cdot9^{10}-7\cdot2^{29}\cdot27^6}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot2^{27}\cdot3^{20}}{5\cdot2^{29}\cdot3^{20}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3^2-7\right)}\)
\(=\dfrac{10-9}{5\cdot9-7}=\dfrac{1}{38}\)
45^10*5^20/75^15
=5^10*9^10*5^20/(5^2)^15
=5^10*5^20*9^10/5^30
=9^10
(0.8)^5/(0.4)^6
=(0.4)^5*2^5/(0.4)^6
=2^5/(0.4)
=32/(0.4)
=80
2^15*9^4/6^6*8^3
=2^15*(3^2)^4/2^6*3^6*(2^3)^3
=2^15*3^8/2^6*3^6*2^9
=3^2
=9
a) \(11^9+12^9+13^9+14^9+15^9+16^9\)
\(=11^{4.2}.11+12^{4.2}.12+13^{4.2}.13+14^{4.2}.14+15^9+16^9\)
\(=...1.11+...6.12+...1.13+...6.14+...5+...6\)
\(=...1+...2+...3+...4+...5+...6\)
\(=...1\)
Vậy biểu thức trên có chũ số tận cùng là 1
b) \(25^7+26^7+27^7+28^7+29^7+29^7+30^7+31^7\)
\(=...5+...6+27^4.27^3+28^4.28^3+29^4.29^3+29^4.29^3+...0+...1\)
\(=...5+...6+...3+...8+...9+...9+...0+...1\)
\(=...1\)
Vậy biểu thức trên có chữ số tận cùng là 1
ta có
\(x^{15}=x^{14}\Leftrightarrow x^{14}\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x^{14}=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)