K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2020

Cách chọn số đầu tiên : 7 cách

Cách chọn số thứ 2: 7 cách

=> Không gian mẫu: \(n\left(\Omega\right)=7.7=49\)

a/ Gọi số chẵn là \(\overline{ab}\)

Xét b=0 => Có 1 cách chọn b và 7 cách chọn a

Xét b= 2;4;6=> có 3 cách chọn b và 6 cách chọn a

=> Có 1.7+3.6=25 (số chẵn)

=> \(n\left(A\right)=25\Rightarrow p\left(A\right)=\dfrac{25}{49}\)

b/ Gọi số chia hết cho 5 có dạng \(\overline{cd}\)

Xét d=0 => Có 1 cách chọn d và 7 cách chọn c

Xét d=5 => Có 1 cách chọn d và 6 cách chọn c

=> Có 1.7+ 1.6=13 (số chia hết cho 5)

\(\Rightarrow n\left(B\right)=13\Rightarrow p\left(B\right)=\dfrac{13}{49}\)

c/ Các số chia hết cho 9 có dạng \(\overline{ef}\)

\(e+f=9\Rightarrow\left(e;f\right)=\left(2;7\right);\left(3;6\right);\left(4;5\right)\)

\(\Rightarrow co:2!.3=6\left(so-chia-het-cho-9\right)\)

\(\Rightarrow n\left(C\right)=6\Rightarrow p\left(C\right)=\dfrac{6}{49}\)

#include <bits/stdc++.h>

using namespace std;

int B[100],n,t;

{

cin>>n;

for (int i=1; i<=n; i++) cin>>B[i];

t=0;

for (int i=1; i<=n; i++)

if (B[i]%10==0) t+=B[i];

cout<<t<<endl;

int dem=0;

for (int i=1; i<=n; i++)

if ((i%2==0) && (A[i]%2!=0)) dem++;

cout<<dem<<endl;

for (int i=1; i<=n; i++)

if ((A[i]%2!=0) && (A[i]%3==0)) cout<<A[i];

}

giải giúp mình mấy bài này với từ các chữ số 1,2,4,5,6,7,8,9(không có số 3 nhé)1. có thể lập được bao nhiêu số tn có 6 chữ số khác nhau2. lập được bao nhiêu số có 6 chữ số và các chữ số đều chẵn3.có 7 chữ số trong đó các chữ số các đều chữ số đứng giữa là giống nhau4.có 5 chữ số khác nhau trong đó chữ số đầu tiên và chữ số cuối cùng là lẻ5.có 5 chữ số khác nhau trong...
Đọc tiếp

giải giúp mình mấy bài này với

từ các chữ số 1,2,4,5,6,7,8,9(không có số 3 nhé)

1. có thể lập được bao nhiêu số tn có 6 chữ số khác nhau

2. lập được bao nhiêu số có 6 chữ số và các chữ số đều chẵn

3.có 7 chữ số trong đó các chữ số các đều chữ số đứng giữa là giống nhau

4.có 5 chữ số khác nhau trong đó chữ số đầu tiên và chữ số cuối cùng là lẻ

5.có 5 chữ số khác nhau trong đó tổng của chữ số đầu tiên và chữ số cuối cùng chia hết cho 10

6.có 5 chứ số trong đó 2 chữ số kề nhau phải khác nhau

7. có 7 chữ số khác nhau trong đó chữ số đầu là lẻ và số đó chia hết cho 2

8. ------------------------------------------------------------------và chữ số cuối chia hết cho 3

9.số tự nhiên chẵn có 7 chữ số khác nhau sao cho chữ số chính giữa là chữ số chẵn

3
31 tháng 10 2016

gọi số cần tìm là abcdef( có gạch trên đầu b nhé)

với đk a#0 abcdef khác nhau

1; a có 8 cách chọn

b có 7 cách chọn

c có 6 cách chọn

d có 5 cách chọn

e có có 4 cách chọn

f có 3 cách chọn

=> có 20160 số tmycbt

31 tháng 10 2016

gọi số cần tìm là abcdef (abcdef chẵn a#0)

a,b,c,d,e,f đều có 4 cách chọn

=> 46 =4096 số tmycbt

 

a: \(\overline{abcde}\)

a có 9 cách chọn 

b có 9 cách chọn 

c có 8 cách chọn 

d có 7 cách chọn

e có 6 cách chọn 

=>Số cách chọn là \(9\cdot9\cdot8\cdot7\cdot6=27216\left(cách\right)\)

d:

*Số lẻ:

e có 5 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 45000(cách)

*Số chẵn

e có 5 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 45000(cách)

e: e có 2 cách chọn 

a có 9 cách chọn 

b có 10 cách chọn 

c có 10 cách chọn 

d có 10 cách chọn

=>Số cách chọn là 18000 cách

6 tháng 8 2019

Đáp án B

31 tháng 1 2017

Chọn C

Ta có 

Gọi số tự nhiên cần tìm có bốn chữ số là  a b c d ¯

Vì  a b c d ¯  chia hết cho 11 nên (a + c) - (b + d)  ⋮ 11

=> (a + c) - (b + d) = 0 hoặc (a + c) - (b + d) = 11 hoặc (a + c) - (b + d) = -11 do 

Theo đề bài ta cũng có a + b + c + d chia hết cho 11

Mà 

hoặc 

Vì  nên  (a + c) - (b + d) và a + b + c + d cùng tính chẵn, lẻ 

(do các trường hợp còn lại không thỏa mãn) => (a,c) và (b,d) là một trong các cặp số: 

- Chọn 2 cặp trong số 4 cặp trên ta có C 4 2  cách.

- Ứng với mỗi cách trên có 4 cách chọn a; 1 cách chọn c; 2 cách chọn b; 1 cách chọn  d.

Vậy xác suất cần tìm là 

28 tháng 9 2021

b, Số có 4 chữ số có dạng \(\overline{abcd}\).

a có 7 cách chọn.

b có 7 cách chọn.

c có 6 cách chọn.

d có 5 cách chọn.

\(\Rightarrow\) có \(7.7.6.5=1470\) số thỏa mãn.

28 tháng 9 2021

a, Có thể lập được \(\dfrac{7777-1000}{1}+1=6778\) số thỏa mãn.

17 tháng 3 2018

Chọn A

Số phần tử của A là A 9 4 = 3024 số. 

Số phần tử của không gian mẫu là  n ( Ω ) = 3024

Gọi A là biến cố: “Chọn được một số chia hết cho 11 và tổng bốn chữ số của nó chia hết cho 11”.

Xét số tự nhiên có 4 chữ số có dạng 

Theo bài ra ta có: và 

Suy ra 

Trong các chữ số 1;2;3;4;5;6;7;8;9 có các bộ số mà tổng chia hết cho 11 là  

Chọn 2 cặp trong 4 cặp số trên để tạo số 

Chọn {a;c} có 4 cách, chọn {b;d} có 3 cách, sau đó sắp thứ tự các số a, b, c, d. Ta được 4.3.2.2 = 48

Suy ra n(A) = 48

23 tháng 11 2019

b) TH1: Nếu chọn chữ số 5 làm chữ số hàng đơn vị

Có 8 cách chọn chữ số hàng nghìn

Có 8 cách chọn chữ số hàng trăm

Có 7 cách chọn chữ số hàng chục

-> Có 8.8.7.1=448 số

TH2: Nếu chọn chữ số 0 làm hàng đơn vị

Có 9 cách chọn chữ số hàng nghìn

Có 8 cách chọn chữ số hàng trăm

Có 7 cách chọn chữ số hàng chục

-> Có 9.8.7.1=504 số

=> Có tất cả 448+504=952 số thỏa mãn đề bài