K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 2 2023

Lời giải:

$|x-7|=\frac{1}{2}-2x$

$\Rightarrow \frac{1}{2}-2x\geq 0\Rightarrow x\leq \frac{1}{4}$

$\Rightarrow x-7<0\Rightarrow |x-7|=7-x$. Khi đó ta có:

$7-x+2x=\frac{1}{2}$

$7+x=\frac{1}{2}$

$x=\frac{1}{2}-7=\frac{-13}{2}$ (thỏa mãn)

10 tháng 2 2023



- ( x - 7 ) + 2x = 1/2 ( Tuy nhiên, x<7 )

  ( x - 7 ) + 2x = 1/2 ( Tuy nhiên, x > hoặc = 7 )

    x = -13/2 ( Tuy nhiên, x<7 )

    x = 5/2 ( Tuy nhiên, x> hoặc = 7 )

    x = -13/2

    x thuộc \(\varnothing\)

    x = -13/2

Vậy x = -13/2

NV
18 tháng 3 2023

a.

ĐKXĐ: \(x\ne6\)

\(\dfrac{7}{x-6}=\dfrac{x-6}{7}\)

\(\Leftrightarrow\dfrac{49}{7\left(x-6\right)}=\dfrac{\left(x-6\right)^2}{7\left(x-6\right)}\)

\(\Rightarrow\left(x-6\right)^2=49=7^2\)

\(\Rightarrow\left[{}\begin{matrix}x-6=7\\x-6=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=13\\x=-1\end{matrix}\right.\) (thỏa mãn)

b. ĐKXĐ: \(x\ne\dfrac{1}{2}\)

\(\dfrac{2x-1}{8}=\dfrac{-2}{1-2x}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)^2}{8\left(2x-1\right)}=\dfrac{16}{8\left(2x-1\right)}\)

\(\Rightarrow\left(2x-1\right)^2=16=4^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\) (thỏa mãn)

DT
5 tháng 12 2023

loading... 

28 tháng 10 2023

a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)

=>\(\left|2x+1\right|=\dfrac{1}{2}\)

=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

c: (2x-3)2=36

=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

d: \(7^{x+2}+2\cdot7^x=357\)

=>\(7^x\cdot49+7^x\cdot2=357\)

=>\(7^x=7\)

=>x=1

28 tháng 10 2023

a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)

\(---\)

b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)

\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)

\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)

\(---\)

c) \(\left(2x-3\right)^2=36\)

\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

\(---\)

d) \(7^{x+2}+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)

\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)

\(\Rightarrow7^x\cdot\left(49+2\right)=357\)

\(\Rightarrow7^x\cdot51=357\)

\(\Rightarrow7^x=357:51\)

\(\Rightarrow7^x=7\)

\(\Rightarrow x=1\)

3 tháng 3 2017

\(\Leftrightarrow\dfrac{7^x.7^2+7^x.7+7^x}{57}=\dfrac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}\)

\(\Leftrightarrow7^x\left(\dfrac{7^2+7+1}{57}\right)=5^{2x}\left(\dfrac{1+5+5^3}{131}\right)\)

\(\Leftrightarrow7^x\dfrac{57}{57}=5^{2x}\dfrac{131}{131}\Leftrightarrow7^x=5^{2x}\Leftrightarrow7^x=25^x\Leftrightarrow x=0\)

a) Ta có: \(\dfrac{1}{4}-\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{1}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{8}\\x+\dfrac{1}{2}=-\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{8}\\x=\dfrac{-5}{8}\end{matrix}\right.\)

 

29 tháng 6 2021

4 câu đầu hìn như sai đề :v

`m)(3/2-2/(-5)):x-1/2=3/2`

`<=>(3/2+2/5):x=3/2+1/2=2`

`<=>19/10:x=2`

`<=>x=19/10:2=19/20`

`n)(3/2-5/11-3/13)(2x-2)=(-3/4+5/22+3/26)`

`<=>(3/2-5/11-3/13)(2x-2)+3/4-5/22-3/26=0`

`<=>(3/2-5/11-3/13)(2x-2)+1/2(3/2-5/11-3/13)=0`

`<=>(3/2-5/11-3/13)(2x-2+1/2)=0`

Mà `3/2-5/11-3/13>0`

`<=>2x-2+1/2=0`

`<=>2x-3/2=0`

`<=>2x=3/2<=>x=3/4`

29 tháng 6 2021

Câu i không có dấu "=" sao tìm x :v

12 tháng 9 2023

\(a,2\dfrac{1}{2}-x+\dfrac{4}{5}=\dfrac{2}{3}-\left(-\dfrac{4}{7}\right)\\ \Rightarrow\dfrac{5}{2}-x+\dfrac{4}{5}=\dfrac{26}{21}\\ \Rightarrow\dfrac{5}{2}-x=\dfrac{46}{105}\\ \Rightarrow x=\dfrac{433}{210}\\ b,-\dfrac{4}{7}-x=\dfrac{3}{5}-2x\\ \Rightarrow2x-\dfrac{4}{7}-x=\dfrac{3}{5}\\ \Rightarrow2x-x=\dfrac{41}{35}\\ \Rightarrow x=\dfrac{41}{35}\\ c,\left(\dfrac{3}{8}-\dfrac{1}{5}\right)+\left(\dfrac{5}{8}-x\right)=\dfrac{1}{5}\\ \Rightarrow\dfrac{7}{40}+\dfrac{5}{8}-x=\dfrac{1}{5}\\ \Rightarrow\dfrac{4}{5}-x=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{3}{5}.\)

13 tháng 10 2021

\(\dfrac{x}{3}=\dfrac{y}{4}\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}\)=2
\(\dfrac{x}{3}=2=>x=6\)
*\(\dfrac{y}{4}=2=>y=8\)
Vậy( x, y) ∈{ 6, 8}
Kiểm tra lại nhaa

13 tháng 10 2021

còn 1 câu 

a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y

=5x^3-7x^2y+2xy^2+5x-2y

b: =(x^2-1)(x+2)

=x^3+2x^2-x-2

c: =1/2x^2y^2(4x^2-y^2)

=2x^4y^2-1/2x^2y^4

d: =(x^2-1/4)(4x-1)

=4x^3-x^2-x+1/4

e: =x^2-2x-35+(2x+1)(x-3)

=x^2-2x-35+2x^2-6x+x-3

=3x^2-7x-38

25 tháng 7 2023

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

25 tháng 7 2023

Bạn xem lại đề 2, phần mẫu của N