Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tính thường
b) \(\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow1< x< -2\left(ktm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\left(tm\right)\)
vậy
c)\(\left(x+\frac{3}{5}\right)\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Leftrightarrow-1< x< -\frac{3}{5}\left(tm\right)\)
d) \(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Leftrightarrow x>\frac{1}{3}\left(tm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\Leftrightarrow x< \frac{-2}{5}\left(tm\right)\)
vậy ...
a) 5/2 - x + 4/5 = 2/3 + 4/7
<=> 33/10 - x = 26/21
<=> x = 433/210
b) ( x - 1 )( x + 2 ) < 0 ( cái " x " kia là nhân à :v )
Xét 2 trường hợp
1.\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Rightarrow-2< x< 1\)
Vậy -2 < x < 1
c) ( x + 3/5 )( x + 1 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Rightarrow-1< x< -\frac{3}{5}\)
2. \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{3}{5}\\x< -1\end{cases}}\)( loại )
Vậy -1 < x < -3/5
d) ( x - 1/3 )( x + 2/5 ) > 0
Xét hai trường hợp :
1.\(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Rightarrow x>\frac{1}{3}\)
2.\(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Rightarrow}x< -\frac{2}{5}\)
Vây \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)
Làm câu a và b thoy nhé, câu c tương tự câu a, câu d và e thì dễ rồi.
a) Vì \(\left(3x+1\right)\left(2x-4\right)< 0\)
\(\Rightarrow3x+1>0\) và \(2x-4< 0\)
hoặc \(3x+1< 0\) và \(2x-4>0\)
+) \(3x+1>0\Rightarrow x>\frac{-1}{3}\left(1\right)\)
\(2x-4< 0\Rightarrow x< 2\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{-1}{3}< x< 2\)
+) \(3x+1< 0\Rightarrow x< \frac{-1}{3}\left(3\right)\)
\(2x-4>0\Rightarrow x>2\left(4\right)\)
Từ (3) và (4) suy ra \(2< x< \frac{-1}{3}\)
\(\Rightarrow\) vô lý.
Vậy \(\frac{-1}{3}< x< 2.\)
b) Do \(\left(-x-5\right)\left(2x+1\right)>0\)
\(\Rightarrow-x-5>0\) và \(2x+1>0\)
hoặc \(-x-5< 0\) và \(2x+1< 0\)
+) \(-x-5>0\Rightarrow x>-5\left(5\right)\)
\(2x+1>0\Rightarrow x>\frac{-1}{2}\left(6\right)\)
Từ (5) và (6) suy ra \(x>\frac{-1}{2}\)
+) \(-x-5< 0\Rightarrow x< -5\left(7\right)\)
\(2x+1< 0\Rightarrow x< \frac{-1}{2}\) (8)
Từ (7) và (8) suy ra \(x< -5\)
Vậy \(\left[\begin{matrix}x>\frac{-1}{2}\\x< -5\end{matrix}\right.\).
d)\(\left|x+3\right|< 5\)
\(\Rightarrow-5< x+3< 5\)
\(\Rightarrow-8< x< 2\)
Ban nên sử dụng bất đẳng thúc cosi
a/ \(\dfrac{x-7}{2}< 0\Rightarrow x-7< 0\Rightarrow x< 7\)
Vậy........
b/ \(\dfrac{x+3}{x+5}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3< 0\\x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3>0\\x+5< 0\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -3\\x>-5\end{matrix}\right.\\\left\{{}\begin{matrix}x>-3\\x< -5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-5< x< -3\)
Vậy........
a) -2<x<5
=> x E { -1;0;1;2;3;4}
b)-6<x<-1
=> x E { -5;-4;-3;-2}
c)0<x<7
=> x E { 1;2;3;4;5;6}
d)-1<x<6
=> x E { 0;1;2;3;4;5}
a) \(-2< x< 5\)
\(\Rightarrow x=\left\{-1;0;1;2;3;4\right\}\)
b) \(-6< x< -1\)
\(\Rightarrow x=\left\{-5;-4;-3;-2;\right\}\)
c) \(0< x< 7\)
\(\Rightarrow x=\left\{1;2;3;4;5;6\right\}\)
d) \(-1< x< 6\)
\(\Rightarrow x=\left\{0;1;2;3;4;5\right\}\)
e) \(\frac{5}{x}< 1.\)
Để \(\frac{5}{x}< 1\Leftrightarrow\frac{5}{x}\le0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5}{x}=0\\\frac{5}{x}< 0\end{matrix}\right.\)
Mà \(5>0.\)
\(\Rightarrow\frac{5}{x}\ne0.\)
\(\Rightarrow\frac{5}{x}< 0.\)
\(\Rightarrow\) Tử mẫu phải trái dấu
\(\Rightarrow x< 0.\)
Vậy \(x< 0\) thì \(\frac{5}{x}< 1.\)
Chúc bạn học tốt!
a)\(1-2x< 7\Leftrightarrow-2x< 6\Leftrightarrow x>-3\)
b)\(\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
c)\(\left(x-2\right)^2.\left(x+1\right).\left(x-4\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)< 0\) (vì \(\left(x-2\right)^2\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\x-4>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1>0\\x-4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)(loại) hoặc \(\left\{{}\begin{matrix}x>-1\\x< 4\end{matrix}\right.\)(chọn)
\(\Leftrightarrow-1< x< 4\)
d)\(\frac{x^2.\left(x-3\right)}{x-9}< 0\)(ĐK:\(x\ne9\))
\(\Leftrightarrow\frac{x-3}{x-9}< 0\)(vì \(x^2\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x-3< 0\\x-9>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3>0\\x-9< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>9\end{matrix}\right.\)(loại) hoặc \(\left\{{}\begin{matrix}x>3\\x< 9\end{matrix}\right.\)
\(\Leftrightarrow3< x< 9\)
e)\(\frac{5}{x}< 1\)(ĐK:\(x\ne0\))
\(\Leftrightarrow\frac{5}{x}-1< 0\)
\(\Leftrightarrow\frac{5-x}{x}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-x< 0\\x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}5-x>0\\x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>5\\x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 5\\x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< 0\end{matrix}\right.\)
Giải là phải giải cho hết chứ :)
\(\dfrac{x-5}{x+7}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\\x+7< 0\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x-5< 0\\x+7>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>5\\x< -7\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 5\\x>-7\end{matrix}\right.\)
\(\Leftrightarrow-7< x< 5\)