Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e
2005.(x-2006)=2005 x-2006=2005:2005=x-2006=1 x=1+2006 x=2007
g[(x+50).50-50]:50=50 [(x+50).50-50]=50.50=2500 (x+50).50=2500+50=2550 (x+50)=2550:50=51 x=51-50 x=1
e) <=> 2005x -4022030 =2005
<=> 2005x = 4024035
=> x = 4024035 /2005 = 2007
a) 456 + ( x - 357 ) = 1362
x - 357=1362-456
x - 357=906
x=906+357
x=1263
b) ( 2345 - x) - 183 = 2014
2345 - x=2014+183
2345 - x=2197
x=2345-2197
x=148
c) ( x - 2005 ) . 2006 = 0
x - 2005 =0:2006
x - 2005 =0
x=0+2005
x=2005
d) 480 + 45 . 4 = ( x + 125) : 5 + 260
480 + 180 = ( x + 125) : 5 + 260
660=( x + 125) : 5 + 260
( x + 125) : 5 + 260=660
( x + 125) : 5=660-260
( x + 125) : 5=400
x + 125 =400.5
x + 125 =2000
x=20000-125
x=1975
e) 2005 . ( x - 2006) =2005
x - 2006=2005:2005
x - 2006=1
x=1+2006
x=2007
g) [( x + 50) . 50 - 50] : 50 = 50
( x + 50) . 50 - 50=50.50
( x + 50) . 50 - 50=2500
( x + 50) . 50=2500+50
( x + 50) . 50=2550
x + 50=2550:50
x + 50=51
x=51-50
x=1
Bạn Huyền ơi ở chỗ câu d mình ko hiểu tại sao 400.5=2000 mà ở dưới lại ghi 20000-125
\(x-43=\left(57+2x\right)-50\)
\(x-2x=57-50+43\)
\(-x=50\)
\(x=-50\)
a, đk : x khác 10 \(\Rightarrow x-10=26\Leftrightarrow x=36\left(tm\right)\)
b, đk : x khác 2
\(\left(x-2\right)^2=100\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\left(tm\right)\)
a) \(x^{50}=xx\)
\(\Leftrightarrow x^{50}=x^2\)
\(\Leftrightarrow x^{50}-x^2=0\)
\(\Leftrightarrow x^2.\left[x^{48}-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^{48}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{-1;0;1\right\}\)
b) Tương tự
3^1.3^2.3^3.3^50=3^(1+2+3+...+50)=
Tính (1+2+3+...+50)
Số số hạng:
(50-1):1+1=50
Tổng:
(50+1)x50:2=1275
3^1275=3^x-50
<=>x-50=1275
x=1275-50
x=1225
TL :
120 : 54 - [ 50 : 2 - 32 - 2 x 4 ]
120 : 54 - [ 50 : 2 - 9 - 8 ]
120 : 54 - [ 25 - 1 ]
120 : 54 - 24
120 : 30
4
\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)
[(x+50) . 50 - 50] : 50 = 50
[(x+50) . 50 - 50] = 50.50
[(x+50) . 50 - 50] = 100
(x+50) . 50 = 100+50
(x+50) . 50 = 150
(x+50) = 150 : 50
x+50 = 3
x = 3 - 50
x = -47
[(x + 50) . 50 - 50] : 50 = 50
[(x + 50) . 50 - 50] = 50 . 50
(x + 50) .50 - 50 = 250
(x + 50) . 50 = 250 + 50
(x + 50) . 50 = 300
x + 50 = 300 : 50
x + 50 = 6
x = 6 - 50
x = -44