
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:\(\left|x-5\right|=x-5\Leftrightarrow x-5\ge0\Leftrightarrow x\ge5\)
\(\left|x-5\right|=5-x\Leftrightarrow x-5< 0\Leftrightarrow x< 5\)
TH1:\(\left|x-5\right|=x-5\) khi đó,ta có:
\(x-5=2x-7\)
\(\Leftrightarrow2x-x=-5+7\)
\(\Leftrightarrow x=2\left(KTMĐK\right)\)
\(TH2:\left|x-5\right|=5-x\) khi đó,ta có:
\(5-x=2x-7\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4\left(TMĐK\right)\)
Vậy x=4
\(|\)x-5\(|\)=2x-7 (1)
nếu x-5\(\ge\)0 \(\Rightarrow\)x\(\ge\)5 thì \(|\)x-5\(|\)= x-5
thay vao 1 ta đc
x-5=2x-7
\(\Leftrightarrow\)x-2x=-7+5
\(\Leftrightarrow\)-x=-2
\(\Leftrightarrow\)x=2 (loai)
nếu x-5<0 \(\Rightarrow\)x<5 thì \(|\)x-5\(|\)=- x+5
thay vai 1 ta đc
\(\Leftrightarrow\)-x+5=2x-7
\(\Leftrightarrow\)-x-2x=-7-5
\(\Leftrightarrow\)-3x=-12
\(\Leftrightarrow\)x=4 (t/M)
vậy tập nghiệm của pt là S=(4)

Ta có: \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\)
\(\Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)
Gọi: \(x^2-11x+29=a\)
\(\Rightarrow\left(a-1\right)\left(a+1\right)=1680\)
\(\Leftrightarrow a^2-1=1680\)
\(\Leftrightarrow a^2=1681\)
\(\Leftrightarrow a=\pm41\)
* Nếu \(a=-41\)
\(\Leftrightarrow x^2-11x+29=-41\)
\(\Leftrightarrow x^2-11x+70=0\)
\(\Leftrightarrow x^2-2.\dfrac{11}{2}x+\dfrac{121}{4}-\dfrac{121}{4}+70=0\)
\(\Leftrightarrow\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}=0\) ( vô nghiệm )
*Nếu \(a=41\)
\(\Leftrightarrow x^2-11x+29=41\)
\(\Leftrightarrow x^2-11x-12=0\)
\(\Leftrightarrow x^2+x-12x-12=0\)
\(\Leftrightarrow x\left(x+1\right)-12\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=12\end{matrix}\right.\)
Vây: Tập nghiệm của phương trình là: \(S=\left\{-1;12\right\}\)
_Chúc bạn học tốt_

\(3x\left(x+5\right)-\left(x+2\right)^2=2x^2+7\)
\(\Leftrightarrow3x^2+15x-x^2-4x-4=2x^2+7\)
\(\Leftrightarrow3x^2-2x^2-x^2+15x-4x=7+4\)
\(\Leftrightarrow11x=11\)
\(\Leftrightarrow x=1\)
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
đăng kí hộ

\(\frac{x-1}{2012}-1+\frac{x+2}{2015}-1+\frac{x+5}{2018}-1+\frac{x+7}{2020}-1+4=4\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2015}+\frac{x-2013}{2018}+\frac{x-2013}{2020}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2015}+\frac{1}{2018}+\frac{1}{2020}\right)=0\)
<=>x-2013=0
<=> x=2013
(vì \(\frac{1}{2012}+\frac{1}{2015}+\frac{1}{2018}+\frac{1}{2020}\)> 0 )

(x - 5)2 - 4(x + 7) = x(x + 1)
=> x2 - 10x + 25 - 4x - 28 = x2 + x
=> -15x - 3= 0
=> -15x = 3
=> x = -1/5
áp dụng delta ta có :
\(\Leftrightarrow x^2-14x-3=x^2+x\)
\(\Rightarrow\left(-15\right)^2-\left(4.0-3\right)=225\)
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{+-\sqrt{225}+\left(15\right)}{0}\)
\(\Rightarrow x=\frac{-1}{5}\)

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

\(\dfrac{4x+7}{x-1}=\dfrac{12x+5}{3x+4}\) (1)
ĐKXĐ : \(x\ne1,-\dfrac{4}{3}\)
\(\left(1\right)\Rightarrow\left(4x+7\right)\left(3x+4\right)=\left(x-1\right)\left(12x+5\right)\)
\(\Leftrightarrow12x^2+16x+21x+28=12x^2+5x-12x-5\)
\(\Leftrightarrow44x+33=0\)
\(\Leftrightarrow x=-\dfrac{33}{44}=-\dfrac{3}{4}\)

<=> \(\frac{2x-3}{35}\)+ \(\frac{x^2-2x}{7}\)< \(\frac{5x^2}{35}\)- \(\frac{7\left(2x-5\right)}{35}\)
<=> \(\frac{2x-3}{35}\)+ \(\frac{5\left(x^2-2x\right)}{35}\)< \(\frac{5x^2}{35}\)- \(\frac{7\left(2x-5\right)}{35}\)
<=> 2x - 3 + 5( x2 - 2x ) < 5x2 - 7( 2x - 5 )
<=> 2x - 3 + 5x2 - 10x < 5x2 - 14x + 35
<=> 2x + 5x2 - 10x - 5x2 + 14x < 35 + 3
<=> 6x < 38
<=> x < \(\frac{19}{3}\)
có sai thì thông cảm :)

|x - 5| = 7
|x - 5| = { x - 5 nếu x - 5 >= 0 <=> x >= 5
{ -(x - 5) nếu x - 5 < 0 <=> x < 5
+) Nếu x >= 5, ta có
x - 5 = 7
<=> x = 7 + 5
<=> x = 12 (tm)
+) Nếu x < 5, ta có:
-(x - 5) = 7
<=> -x + 5 = 7
<=> -x = 7 - 5
<=> -x = 2
<=> x = 2 (TM)
Vậy: S = {12; 2}