Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
\(\Leftrightarrow7x\left(x+5\right)+\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(7x+x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(8x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{5}{8}\end{matrix}\right.\)
\(\Leftrightarrow x^2+x-5x-5-x^2-6x-9-6=0\\ \Leftrightarrow-10x-20=0\\ \Leftrightarrow x=-2\)
\(x^2-25+x\left(x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)+x\left(x+5\right)=0\\ \Leftrightarrow\left(x+5\right)\left(x-5+x\right)=0\\ \Leftrightarrow\left(x+5\right)\left(2x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{5}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
\(a,x^2-10x=-25\)
\(< =>x^2-10x+25=0\)
\(< =>\left(x-5\right)^2=0< =>x=5\)
b, \(4x^2-4x=-1\)
\(< =>4x^2-4x+1=0\)
\(< =>\left(2x-1\right)^2=0< =>x=\frac{1}{2}\)
a) Ta có: \(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)
mà 7>0
nên (x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-2\right\}\)
b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
mà \(\dfrac{2}{3}>0\)
nên x(x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2;2\right\}\)
c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)
\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)
d) Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-2\right\}\)
x.(x+5)-x\(^2\)+25=0
x\(^2\)+5x-x\(^2\)+25=0
5x+25=0
5x=-25
x=-5
Ta có (x + 5)3 - x2 + 25 = 0
=> (x + 5)3 - (x2 - 25) = 0
=> (x + 5)3 - (x + 5)(x - 5) = 0
=> (x + 5)[(x + 5)2 - x + 5] = 0
=> (x + 5)(x2 + 9x + 30) = 0
=> x + 5 = 0 (Vì \(x^2+9x+30=\left(x^2+9x+\frac{81}{4}\right)+\frac{39}{4}=\left(x+\frac{9}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}>0\))
=> x = -5
Vậy x = -5