K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

lx - 4l + 3x = 5

lx - 4l = 5 - 3x

=> x - 4 = +- (5 - 3x)

TH1:

x - 4 = 5 - 3x

x + 3x = 5 + 4

4x = 9

=> x = 9/4

TH2:

x - 4 = -5 + 3x

x - 3x = -5 + 4

-2x = -1

=> x  =1/2

Vay x = 9/4 hoac 1/2

21 tháng 6 2021

| x - 4 | + 3x = 5

| x - 4 | + 3x = 5 \(\Leftrightarrow\)x - 4 + 3x = 5 khi x \(\ge\)4

\(\Leftrightarrow\)4x = 9

\(\Leftrightarrow\)x = \(\frac{9}{4}\)

( không thỏa mãn điều kiện x \(\ge\)4 )

| x - 4 | + 3x = 5  \(\Leftrightarrow\)x - 4 + 3x = - 5 khi x < 4

\(\Leftrightarrow\)2x = 1

\(\Leftrightarrow\)x = \(\frac{1}{2}\)

b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Rightarrow x^2-9x+20-x^2+x+2=7\)

\(\Rightarrow-8x+22=7\)

\(\Rightarrow-8x=-15\)

\(\Rightarrow x=\frac{15}{8}\)

c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)

\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)

\(\Rightarrow17x=-11\)

\(\Rightarrow x=-\frac{11}{17}\)

d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)

\(\Rightarrow6x=-27\)

\(\Rightarrow x=-\frac{27}{6}\)

\(\Rightarrow x=-\frac{9}{2}\)

e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)

\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)

\(\Rightarrow-4=x-4\)

\(\Rightarrow x=0\)

9 tháng 7 2019

b)    (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8

c)    (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17

d)    (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27

e)    (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0

9 tháng 7 2019

b) \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Leftrightarrow\) \(x^2-4x-5x+20-x^2+2x-x+2\)\(=7\)

\(\Leftrightarrow\) \(-8x+22=7\)

\(\Leftrightarrow\) x= \(\frac{-15}{8}\)

9 tháng 7 2019

c) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Leftrightarrow\)\(3x^2-6x-4x+8=3x^2-27x-3\)

\(\Leftrightarrow\) \(3x^2-3x^2-6x-4x+27x=-3-8\)

\(\Leftrightarrow\) \(17x=-11\)

\(\Leftrightarrow\) \(x=\frac{-11}{17}\)

4 tháng 7 2017

a, \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy...

b, \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)

\(\Leftrightarrow-3x^2+15x+5x-5+3x^2=4-x\)

\(\Leftrightarrow21x=9\)

\(\Leftrightarrow x=\dfrac{3}{7}\)

Vậy...

c, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Leftrightarrow x^2-9x+20-x^2+x+2=7\)

\(\Leftrightarrow-8x=-15\Leftrightarrow x=\dfrac{15}{8}\)

Vậy...

d, \(-\left(x+3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)

\(\Leftrightarrow-x^2+x+12+x^2-1=10\)

\(\Leftrightarrow x=-1\)

Vậy...

e, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Leftrightarrow x^3-27+5x-x^3=6x\)

\(\Leftrightarrow x=-27\)

Vậy...

4 tháng 7 2017

a) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(4x^2-20x-7x^2+28x+3x^2-12=0\)

\(8x-12=0\)

\(4\left(2x-3\right)=0\)

\(2x-3=0\Rightarrow x=\dfrac{3}{2}\)

b) \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)

\(-3x^2+15x+5x-5+3x^2-4+x=0\)

\(21x-9=0\)

\(3\left(7x-3\right)=0\)

\(\Rightarrow7x-3=0\Rightarrow x=\dfrac{3}{7}\)

c) \(\left(x-5\right)\left(x-4\right)-\left(x-1\right)\left(x-2\right)=7\)

\(x^2-4x-5x+20-x^2+2x+x-2-7=0\)

\(-6x+11=0\Rightarrow x=\dfrac{11}{6}\)

d) \(-\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)

\(-x^2+4x+3x-12+x^2-1-10=0\)

\(7x-23=0\)

\(x=\dfrac{23}{7}\)

e) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(x^3-27+5x-x^3-6x=0\)

\(-x-27=0\Rightarrow x=-27\)

26 tháng 3 2020

a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2 

= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25

= 36

b) (3x^2 - y)^2

= 9x^4 - 6x^2y + y^2

c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)

= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4

= 9x^2 + 54

d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2

= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x

= x^3 - 16x^2 + 25x

e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)

= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2

= x^3 + 2x^2 - 2x - 12

f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2

= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4

= x^6 + 2x^4 + 2x^2 + 124

28 tháng 7 2021

có sai đecc ko bạn.......gianroi

28 tháng 4 2018

a) 5 - 4x = 3x - 9

\(\Leftrightarrow5-4x-3x+9=0\)

\(\Leftrightarrow14-7x=0\)

\(\Leftrightarrow7x=14\Leftrightarrow x=2\)

Vậy \(S=\left\{2\right\}\)

b) \(\left(x-4\right)\left(3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{-3;4\right\}\)

c) \(\dfrac{x}{x+4}+\dfrac{12}{x-4}=\dfrac{4x+48}{x\cdot x-16}\)(1)

ĐKXĐ: \(x\ne\pm4\)

\(\left(1\right)\Leftrightarrow\dfrac{x\left(x-4\right)+12\left(x+4\right)-4x-48}{\left(x+4\right)\left(x-4\right)}=0\)

\(\Leftrightarrow x^2-4x+12x+48-4x-48=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-4\left(KTM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

d) \(4-2x=7-x\)

\(\Leftrightarrow4-2x-7+x=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\Leftrightarrow x=-3\)

Vậy \(S=\left\{-3\right\}\)

e) \(\left(x+4\right) \left(8-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\8-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-4;2\right\}\)

f) \(\dfrac{x}{x+5}+\dfrac{11}{x-5}=\dfrac{x+55}{x\cdot x-25}\left(2\right)\)

ĐKXĐ: \(x\ne\pm5\)

\(\left(2\right)\Leftrightarrow\dfrac{x\left(x-5\right)+11\left(x+5\right)-x-55}{\left(x+5\right)\left(x-5\right)}=0\)

\(\Leftrightarrow x^2-5x+11x+55-x-55=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-5\left(KTM\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

g) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

\(\Leftrightarrow\dfrac{3\left(3x+2\right)-3x-1-10-12x}{6}=0\)

\(\Leftrightarrow9x+6-3x-1-10-12x=0\)

\(\Leftrightarrow-6x-5=0\)

\(\Leftrightarrow-6x=5\)

\(\Leftrightarrow x=-\dfrac{5}{6}\)

Vậy \(S=\left\{-\dfrac{5}{6}\right\}\)

h) \(2x-\left(3-5x\right)=4\left(x+3\right)\)

\(\Leftrightarrow2x-3+5x-4x-12=0\)

\(\Leftrightarrow3x-15=0\)

\(\Leftrightarrow x=5\)

Vậy \(S=\left\{5\right\}\)

i) \(3x-6+x=9-x\)

\(\Leftrightarrow3x-6+x-9+x=0\)

\(\Leftrightarrow5x-15=0\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

k)\(2t-3+5t=4t+12\)

\(\Leftrightarrow2t-3+5t-4t-12=0\)

\(\Leftrightarrow3t-15=0\)

\(\Leftrightarrow t=5\)

Vậy \(S=\left\{5\right\}\)

28 tháng 4 2018

c.ơn bạn

18 tháng 9 2018

a) \(3\left(x^2-2x+1\right)+x\left(2-3x\right)=7\)

\(\Rightarrow3x^2-6x+3+2x-3x^2=7\)

\(\Rightarrow-4x+3=7\)

\(\Rightarrow-4x+3-7=0\)

\(\Rightarrow-4x-4=0\)

\(\Rightarrow-4\left(x+1\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b) \(5\left(x-2\right)+2\left(x+3\right)=10\)

\(\Rightarrow5x-10+2x+6=10\)

\(\Rightarrow7x-4=10\)

\(\Rightarrow7x=10+4=14\)

\(\Rightarrow x=\dfrac{14}{7}=2\)

c) \(\left(x+1\right)\left(-3\right)+5\left(x-4\right)=-3\)

\(\Rightarrow-3x-3+5x-20=-3\)

\(\Rightarrow2x-23=-3\)

\(\Rightarrow2x=-3+23=20\)

\(\Rightarrow x=\dfrac{20}{2}=10\)

d) \(2\left(x-1\right)-x\left(3-x\right)=x^2\)

\(\Rightarrow2x-2-3x+x^2=x^2\)

\(\Rightarrow-x-2+x^2-x^2=0\)

\(\Rightarrow-x-2=0\)

\(\Rightarrow-x=2\)

\(\Rightarrow x=-2\)

đ) \(3x\left(x+5\right)-2\left(x+5\right)=3x^2\)

\(\Rightarrow3x^2+15x-2x-10=3x^2\)

\(\Rightarrow3x^2-3x^2+13x-10=0\)

\(\Rightarrow13x-10=0\)

\(\Rightarrow13x=10\)

\(\Rightarrow x=\dfrac{10}{13}\)

e) \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)

\(\Rightarrow4x^2+8x+4x-x^2=3x^2+12\)

\(\Rightarrow3x^2+12x=3x^2+12\)

\(\Rightarrow3x^2+12x-3x^2-12=0\)

\(\Rightarrow12\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

f) \(\dfrac{1}{3}x\left(3x+6\right)-x\left(x-5\right)=9\)

\(\Rightarrow x^2+2x-x^2+5x=9\)

\(\Rightarrow7x=9\)

\(\Rightarrow x=\dfrac{9}{7}\)