Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(\Leftrightarrow2x^2-x-5< x^2+x-6\)
\(\Leftrightarrow x^2-2x+1< 0\)
hay \(x\in\varnothing\)
b: \(\Leftrightarrow x^2-5x-x+4>0\)
\(\Leftrightarrow x^2-6x+4>0\)
\(\Leftrightarrow\left(x-3\right)^2>5\)
hay \(\left[{}\begin{matrix}x>\sqrt{5}+3\\x< -\sqrt{5}+3\end{matrix}\right.\)
a/
-Cauchy-Schwar
\(P=\sum\frac{a^4}{a\sqrt{b^2+3}}\ge\frac{\left(\sum a^2\right)^2}{\sum a\sqrt{b^2+3}}\)
Côsi: \(\sum a\sqrt{b^2+3}=\frac{1}{2}\sum2a.\sqrt{b^2+3}\le\frac{1}{2}.\sum\frac{\left(2a\right)^2+b^2+3}{2}=\frac{1}{4}.\left[5\left(a^2+b^2+c^2\right)+3.3\right]=6\)
\(\Rightarrow P\ge\frac{3^2}{6}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1.
b/
Côsi: \(8^x+8^x+64\ge3\sqrt[3]{8^x.8^x.64}=12.4^x\Rightarrow8^x\ge6.4^x-32\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-96\)
\(4^x+4^y+4^z\ge3\sqrt[3]{4^{x+y+z}}=3\sqrt[3]{4^6}=48\)
\(\Rightarrow-2\left(4^x+4^y+4^z\right)\le-96\)
\(\Rightarrow8^x+8^y+8^z\ge6\left(4^x+4^y+4^z\right)-2\left(4^x+4^y+4^z\right)=4^{x+1}+4^{y+1}+4^{z+1}\)
Chỉ tìm được min với điều kiện \(x;y;z\) dương, bất kì thì chịu
Áp dụng BĐT \(\frac{a^n+b^n}{a^{n-1}+b^{n-1}}\ge\frac{a^{n-1}+b^{n-1}}{a^{n-2}+b^{n-2}}\) ta được:
\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{z^4+y^4}{z^3+y^3}+\frac{x^4+z^4}{x^3+z^3}\ge\frac{x^3+y^3}{x^2+y^2}+\frac{z^3+y^3}{z^2+y^2}+\frac{x^3+z^3}{x^2+y^2}\)
\(P\ge\frac{x^2+y^2}{x+y}+\frac{z^2+y^2}{z+y}+\frac{x^2+z^2}{x+z}\ge\frac{x+y}{2}+\frac{z+y}{2}+\frac{x+z}{2}=x+y+z=2017\)
\(\Rightarrow P_{min}=2017\) khi \(x=y=z=\frac{2017}{3}\)
\(\Rightarrow\)x-4 và 3-y \(\in\)Ư(4)={-1;-2;-4;1;2;4}
Ta có bảng giá trị
2
Vậy các cặp số nguyên (x,y) là (2,5);(3,7);(0,4);(5;-1);(6,1);(8,2)
Ta có 4=1×4=2×2
Sau đó bn lập bảng mà tìm nhé !
Tk mình nhé bn !