Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#040911`
`(x + 5)^3 = (2x)^3`
`\Rightarrow x + 5 = 2x`
`\Rightarrow x + 5 - 2x = 0`
`\Rightarrow 5 + (x - 2x) = 0`
`\Rightarrow 5 - x = 0`
`\Rightarrow x = 5 - 0`
`\Rightarrow x = 5`
Vậy, `x= 5.`
\(^{3^2}\).\(^{3^3}\)+\(2^3\).\(2^2\)
(\(^{2^3}\).\(^{3^3}\))+(\(2^2\).\(^{3^2}\)
=275
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
3x 2x+1 - 5 = 19
3.2x+1 = 19 + 5
3x2x+1 = 24
2x+1 = 24 :3
2x+1 = 8
2x+1 = 23
=>x+1 = 3
=> x=2