Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
a) \(x-\dfrac{2}{3}=\dfrac{3}{8}\Rightarrow x=\dfrac{3}{8}+\dfrac{2}{3}=\dfrac{25}{24}\)
b) \(x-\dfrac{3}{4}=\dfrac{13}{10}:\dfrac{26}{5}\Rightarrow x-\dfrac{3}{4}=\dfrac{1}{4}\Rightarrow x=\dfrac{1}{4}+\dfrac{3}{4}=1\)
c) \(\dfrac{3}{2}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\Rightarrow x+\dfrac{1}{2}=\dfrac{3}{2}-\dfrac{4}{5}=\dfrac{7}{10}\)
\(\Rightarrow x=\dfrac{7}{10}-\dfrac{1}{2}=\dfrac{1}{5}\)
d) \(\left|x-2\right|-1=0\Rightarrow\left|x-2\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a: Ta có: \(x-\dfrac{2}{3}=\dfrac{3}{8}\)
\(\Leftrightarrow x=\dfrac{3}{8}+\dfrac{2}{3}=\dfrac{9}{24}+\dfrac{16}{24}=\dfrac{25}{24}\)
b: Ta có: \(x-\dfrac{3}{4}=\dfrac{13}{10}:\dfrac{26}{5}\)
\(\Leftrightarrow x-\dfrac{3}{4}=\dfrac{13}{10}\cdot\dfrac{5}{26}=\dfrac{1}{4}\)
hay x=1
a: \(x=\left(-\dfrac{2}{3}\right)^5:\left(-\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^3=-\dfrac{8}{27}\)
b: =>x-1/2=1/3
=>x=5/6
c: =>2/3x-1=0 hoặc 3/4x+1/2=0
=>x=3/2 hoặc x=-1/2:3/4=-1/2*4/3=-4/6=-2/3
d =>4/9:x=10/3:9/4=10/3*4/9=40/27
=>x=4/9:40/27=4/9*27/40=108/360=3/10
a: 5x+2>3x-1
=>5x-3x>-1-2
=>2x>-3
hay x>-3/2
b: \(\dfrac{3}{4}x-\dfrac{1}{2}>\dfrac{1}{2}x+\dfrac{3}{4}\)
=>3/4x-1/2x>3/4+1/2
=>1/2x>5/4
hay x>5/4:1/2=5/2
c: (x-2)(x-3)>0
=>x-3>0 hoặc x-2<0
=>x>3 hoặc x<2
d: (2x+4)(x-5)<0
=>(x+2)(x-5)<0
=>-2<x<5
1) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\)
\(\Leftrightarrow x=-\dfrac{3}{20}\)
2) \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-\dfrac{1}{7}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)
3) \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{4x}=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{4x}=-\dfrac{7}{20}\)
\(\Leftrightarrow4x=-\dfrac{20}{7}\)
\(\Leftrightarrow x=-\dfrac{5}{7}\)
a: Ta có: \(0,\left(3\right)+\dfrac{10}{3}+0,4\left(2\right)\)
\(=\dfrac{1}{3}+\dfrac{10}{3}+\dfrac{4}{9}\)
\(=\dfrac{33}{9}+\dfrac{4}{9}=\dfrac{37}{9}\)
b: Ta có: \(\dfrac{4}{9}+1.2\left(31\right)-0,\left(13\right)\)
\(=\dfrac{4}{9}+\dfrac{1219}{990}-\dfrac{13}{99}\)
\(=\dfrac{440}{990}+\dfrac{1219}{990}-\dfrac{130}{990}\)
\(=\dfrac{139}{90}\)
c: Ta có: \(2,\left(4\right)\cdot\dfrac{3}{11}\)
\(=\dfrac{22}{9}\cdot\dfrac{3}{11}\)
\(=\dfrac{2}{3}\)
d: Ta có: \(-0,\left(3\right)+\dfrac{1}{3}\)
\(=-\dfrac{1}{3}+\dfrac{1}{3}\)
=0
a) \(\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2=\dfrac{4}{25}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{22}{15}\\x=-\dfrac{2}{15}\end{matrix}\right.\)
b) \(\Rightarrow\left(1-\dfrac{1}{4}x\right)^2=\dfrac{121}{49}\)
\(\Rightarrow\left[{}\begin{matrix}1-\dfrac{1}{4}x=\dfrac{11}{7}\\1-\dfrac{1}{4}x=-\dfrac{11}{7}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{16}{7}\\x=\dfrac{72}{7}\end{matrix}\right.\)
a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)
hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)
b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)
hay \(x=\dfrac{8}{41}\)
c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|2x-1\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
2, \(\Rightarrow\left\{{}\begin{matrix}\\\dfrac{5}{4}x-\dfrac{7}{2}=0\\\dfrac{5}{8}x+\dfrac{3}{5}=0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{5}\\\\x=\dfrac{-24}{25}\\\end{matrix}\right.\)
(x+3)(-3/4x+2)=0
=>\(\left[{}\begin{matrix}x+3=0\\-\dfrac{3}{4}x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\-\dfrac{3}{4}x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-3\\x=2:\dfrac{3}{4}=\dfrac{8}{3}\end{matrix}\right.\)