K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{-4}{8}=\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}\)

=>\(\dfrac{x}{-10}=\dfrac{-7}{y}=\dfrac{z}{-24}=\dfrac{-1}{2}\)

=>\(\left\{{}\begin{matrix}x=\left(-10\right)\cdot\dfrac{\left(-1\right)}{2}=5\\y=\dfrac{-7\cdot2}{-1}=14\\z=\dfrac{-24\cdot\left(-1\right)}{2}=\dfrac{24}{2}=12\end{matrix}\right.\)

b: \(\dfrac{-3}{6}=\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{-z}{24}\)

=>\(\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{z}{-24}=\dfrac{-1}{2}\)

=>\(\dfrac{x}{2}=\dfrac{18}{y}=\dfrac{z}{24}=\dfrac{1}{2}\)

=>\(x=2\cdot\dfrac{1}{2}=1;y=18\cdot\dfrac{2}{1}=36;z=\dfrac{24}{2}=12\)

\(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>\(\left\{{}\begin{matrix}x=3\cdot4=12\\y^2=4:4=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)

a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)

=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)

=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)

b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)

=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)

=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)

1 tháng 8 2017

Ta có :

 \(\frac{x}{-2}=-\frac{3}{6}\Rightarrow x=\frac{-3.\left(-2\right)}{6}=1\)

\(\frac{-18}{y}=-\frac{3}{6}\Rightarrow y=\frac{-18.6}{-3}=36\)

\(\frac{-z}{24}=-\frac{3}{6}\Rightarrow z=\frac{-3.24}{-6}=12\)

Vậy x = 1 ; y = 36 ; z = 12 

1 tháng 8 2017

Ta có : \(\frac{-3}{6}=\frac{x}{-2}\)=> \(\frac{1}{2}=\frac{x}{2}\) => x = 1

              \(\frac{-3}{6}=\frac{-18}{y}\) => \(\frac{1}{2}=\frac{18}{y}\) => y = 36

              \(\frac{-3}{6}=\frac{-z}{24}\) => \(\frac{1}{2}=\frac{z}{24}\) => z = 12

Vậy ......................