Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Ta có :
\(x+y+1=0\Leftrightarrow x+y=-1\)
\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
Mà \(x+y=-1\)
\(\Leftrightarrow A=x^2.\left(-1\right)-y^2.\left(-1\right)+x^2-y^2+2.\left(-1\right)+3\)
\(\Leftrightarrow A=-x^2+y^2+x^2-y^2-2+3\)
\(\Leftrightarrow A=\left(-x^2+x\right)+\left(y^2-y^2\right)-\left(2-3\right)\)
\(\Leftrightarrow A=0+0-\left(-1\right)\)
\(\Leftrightarrow A=1\)
Vậy ..
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
\(\left(x-2\right)^{2016}+|y^2-9|^{2018}=0\)(*)
Vì \(\left(x-2\right)^{2016}\ge0\)và \(|y^2-9|^{2018}\ge0\)
nên (*)\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\|y^2-9|^{2018}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=-3\end{cases}}\end{cases}}}}\)
A = x^3 + 2xy(y + 1) + y^3 + x^2 + y^2 + xy + 9
= (x^3 + y^3) + 2xy(x + y) + 2xy + (x^2 - xy + y^2) + 9
= (x + y)(x^2 - xy + y^2) + 2xy(x + y + 1) + (x^2 - xy + y^2) + 9
= (x + y + 1)(x^2 - xy + y^2) + 2xy(x + y + 1) + 9
có x + y + 1 = 0
=> A = 0 + 0 + 9
A = 9
a) |x-y|+|x-9|=0
=>
|x-y| | 0 |
|x-9| | 0 |
x | 9;-9 |
y | 9;-9 |
b) |x2-3x|+|(x+1).(x-3)|=0
xét x2-3x|=0
=> x2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
=> x=3
|(x+1)(x-3)|=0
=> (x+1)(x-3)=0
th1 x=0
(0+1).(0-3)=0
-1.(-3)=0(loại)
th2 x=3
(3+1)(3-3)=0
4.0=0 (lấy)
=> x=0
Tìm x, y
Ta có: \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\forall x\inℤ\\\left|y^2-9\right|^{2014}\ge0\forall x\inℤ\end{cases}}\)
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y^2=\pm3\end{cases}}\)
Vậy \(x=2\) và \(y=\pm3\).
Sửa lại phần ta có: \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\forall x\inℚ\\\left|y^2-9\right|^{2014}\ge0\forall y\inℚ\end{cases}}\)