Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)
\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)
Thay x = 2016 vào ta được giá trị biểu thức trên = 1
Hok tốt!
a/ Với \(x=2016\Rightarrow2017=x+1\)
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)
\(A=2025-x=9\)
b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:
\(Q=2017-2016+2015-2014+...+3-2+1\)
\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)
\(Q=1009\)
Ta có:
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\)
\(=x^6-2016x^5-x^5+2016x^4+x^4-2016x^3-x^3+2016x^2+x^2-2016x-x+2017\)
\(=x^5\left(x-2016\right)-x^4\left(x-2016\right)+x^3\left(x-2016\right)-x^2\left(x-2016\right)+x\left(x-2016\right)-\left(x-2016\right)+1\)
Thay x = 2016 vào ta được giá trị biểu thức trên bằng 1
\(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2017\) (1)
Thay 2017 = x+1 vào (1) ,có :
\(x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
= \(x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
= 1
a, 1,5 +|2x - 2/3| = 3/2
|2x - 2/3| = 3/2 - 1,5
|2x - 2/3| = 0
<=> 2x - 2/3 = 0
<=> 2x = 0 + 2/3
<=> 2x = 2/3
<=> x = 2/3 : 2
<=> x = 1/3
Vậy x = 1/3
b, 3/4 - |1/4 - x| = 5/8
|1/4 - x| = 3/4 - 5/8
|1/4 - x| = 1/8
<=> 1/4 - x = 1/8
1/4 - x = /1/8
<=> x = 1/4 - 1/8
x = 1/4 - ( -1/8)
<=> x = 1/8
x = 3/8
Vậy x thuộc { 1/8 ; 3/8 }
\(x\left(x-\frac{1}{3}\right)< 0\)
Để \(x\left(x-\frac{1}{3}\right)< 0\)thì x và \(x-\frac{1}{3}\)trái dấu nhau
Thấy \(x>x-\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}x>0\\x-\frac{1}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x< \frac{1}{3}\end{cases}\Leftrightarrow}0< x< \frac{1}{3}}\)
sửa đề : \(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)
\(\Leftrightarrow\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1=0\)
\(\Leftrightarrow\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\ne0\right)=0\Leftrightarrow x=-2020\)