Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2019)(x-2020)=0.
=> x+2019=0 hoặc x-2020=0.
+, x+2019=0. +, x-2020=0
x= 0-2019 x = 0+2020
x = -2019. x = 2020.
Vậy: x thuộc{ -2019 ; 2020 }.
#Học tốt.
\(\Leftrightarrow\orbr{\begin{cases}x+2019=0\\x-2020=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2019\\x=2020\end{cases}}}\)
Bạn tham khảo link tại đây nhé :v
https://olm.vn/hoi-dap/detail/217907126396.html
\(\left|x-2y\right|+\left|y-2020\right|=0\)
Ta có : \(\hept{\begin{cases}\left|x-2y\right|\ge0\forall x;y\\\left|y-2020\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-2y\right|+\left|y-2020\right|\ge0\forall x;y\)
Dấu ''='' xảy ra : \(\hept{\begin{cases}x=2y\\y=2020\end{cases}\Leftrightarrow\hept{\begin{cases}x=4040\\y=2020\end{cases}}}\)
Vậy \(\left\{x;y\right\}=\left\{4040;2020\right\}\)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
Số nào xuất hiện 2 lần thì thay thế những số đó bằng số 1.
\(B=\frac{1}{2020}\)
B = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right).\left(1-\frac{1}{2020}\right)\)
= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2018}{2019}.\frac{2019}{2020}\)
= \(\frac{1.2.3...2019}{2.3.4..2020}\)(Nếu có 2 thừa số giống nhau lặp lại ở tử số và mẫu số thì rút gọn coi như triệt tiêu hết và không có gì)
= \(\frac{1}{2020}\)
=>S=2(1-1/3+1/3-1/4+....................-1/2020)
=>S=2*(1-1/2020)
=>s=2* 2019/2020
=>S=2019/1010
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2017\cdot2019}+\frac{2}{2019\cdot2021}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}+\frac{1}{2019}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)
Ta có công thức A.B=0 suy ra A=0,B=0
Suy ra X-2019=0 ⟹X=0+2019 ⟹X=2019
X-2020=0 ⟹X=0+2020 ⟹X=2020
\(\left(x-2019\right).\left(x-2020\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2019=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2019\\x=2020\end{cases}}\)
Vậy \(x=2019\)hoặc \(x=2020\)