Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tại $x=2013$ thì $x-2013=0$,
$A=(x^{21}-2013x^{20})-(x^{20}-2013x^{19})+(x^{19}-2013x^{18})-...-(x^2-2013x)+x-1$
$=x^{20}(x-2013)-x^{19}(x-2013)+x^{18}(x-2013)-...-x(x-2013)+x-1$
$=x^{20}.0-x^{19}.0+x^{18}.0-....-x.0+x-1$
$=x-1=2013-1=2012$
\(P\left(x\right)=x^5-2013x^4+2013x^3-2013x^2+2013x-2014\)
\(=x^5-2012x^4-x^4+2012x^3+x^3-2012x^2-x^2+2012x+x-2014\)
\(=\left(x^5-x^4\right)+\left(-2012x^4+2012x^3\right)+\left(x^3-x^2\right)+\left(-2012x^2+2012x\right)+x-2014\)
\(=x^4\left(x-1\right)-2012x^3\left(x-1\right)+x^2\left(x-1\right)-2012x\left(x-1\right)+\left(x-1\right)-2013\)
\(=\left(x-1\right)\left(x^4-2012x^3+x^2-2012x+1\right)-2013\)
\(=\left(x-1\right)\left(x^3\left(x-2012\right)+x\left(x-2012\right)+1\right)-2013\)
Thay x=2012 ta có :
\(P\left(x\right)=\left(2012-1\right)\left(2012^3\left(20112-2012\right)+2012\left(2012-2012\right)+1\right)-2013\)
\(=2011\left(2012^3\cdot0+2012\cdot0+1\right)-2013\)
\(=2011\cdot\left(1\right)-2013\\ =-2\)
\(P\left(x\right)=x^5-\left(2012+1\right)x^4+\left(2012+1\right)x^3-\left(2012+1\right)x^2+\left(2012+1\right)x-\left(2012+2\right)\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+2\right)\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(\Rightarrow P\left(x\right)=-2\)
x=2013
=>x+1=2014
bạn tự thay 2014=x+1 vào B òi rút gọn là xong
Bài 1 :
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}\cdot7\)
\(=2^{17}\cdot2\cdot7\)
\(=2^{17}\cdot14⋮14\left(đpcm\right)\)
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012