Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{ x2 - [ 62 - ( 82 -9.7 )3 -7.5 ]3 -5.3 }3 =1 ... {x2 - [62 - 13 -7.5]3 - 5.3}3=1. {x2 - [36 - 1 -7.5]3 - 5.3}3=1. {x2 - [36 - 1 - 35]3 - 5.3}3=1. {x2 - [35 - 35]3 -5.3}3=1. {x2 - 03 - 5.3}3=1. {x2 - 0 -5.3}3=1. {x2 - 0 - 15}3=1. {x.x - 0 - 15}3=1. {x.x + 0+15}3=1. {x.x +15}3=1.
{x^2−[6^2−(8^2−9⋅7)^3−7⋅5]^3−5⋅3}^3=1
⇒x^2−[36−(64−63)^3−35]^3−15=1
⇒x^2−[36−35−1^3]^3=16
⇒x^2−0^3=16
⇒x^2=16
⇒x=±4
Hok tốt
a,8.6+288:(x-3)^2=50
48+288:(x-3)^2=50
288:(x-3)^2=2
(x-3^2=288:2
(x-3)^2=144=12^2
x=12+3
=>x=15
x=100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
<=>{x2-[62(64-63)3-35]3-15}3=1
<=>[x2-(62.13-35)3-15]3=1
<=>[x2-(36-35)3-15]3=1
<=>(x2-1-15)3=1
<=>(x2-16)=\(\sqrt{1}=1\)
=>x2=17=>x=\(\sqrt{17}\)
{x2-[36(64-63)3-35]-15}3=1
{x2-[36.13-35]-15}3=1
{x2-[36.1-35]-15}3=1
{x2-[36-35]-15}3=1
{x2-1-15}3=1
{x2-1-15}3=13
=>x2-1-15=1
x2=1+1+15
x2=17
x2=căn của 7
=>x=căn 7
Vậy x=căn 7
tk nha
\(\left(X^2-\left(6^2-\left(8^2-9.7\right)-7.5\right)5^3\right)\)\(=1\)
\(\left(X^2-\left(36-\left(64-63\right)^3-35\right)^3-15\right)^3\)\(=1\)
\(\left(X^2-\left(36-1^3-35\right)^3-15\right)^3\)\(=1\)
\(\left(X^2-\left(36-1-35\right)^3-15\right)^3\)\(=1\)
\(\left(X^2-\left(35-35\right)^3-15\right)^3\)\(=1\)
\(\left(X^2-0^3-15\right)^3\)\(=1^3\)
\(\Rightarrow X^2-0-15\)\(=1\)
\(X^2-15\)\(=1\)
\(X^2=15+1\)
\(X^2=16\)
Mà: \(X^2=4^2\)
\(\Rightarrow X=4\)
\(\left\{x^2-\left[6^2-\left(8^2-9\cdot7\right)^3-7\cdot5\right]^3-5\cdot3\right\}^3=1\)
\(\Rightarrow x^2-\left[6^2-\left(8^2-9\cdot7\right)^3-7\cdot5\right]^3-5\cdot3=1\)
\(\Rightarrow x^2-\left[36-\left(64-63\right)^3-35\right]^3-15=1\)
\(\Rightarrow x^2-\left[36-1^3-35\right]^3-15=1\)
\(\Rightarrow x^2-0-15=1\)
\(\Rightarrow x^2=1+15\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow x=4\)
Vậy x =4
<=> [x2-(36-1-35)3-15]3=1
<=> (x2-15)3=1
<=> x2-15=1
<=> x2=16
<=>\(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)