Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (-2x - 1)(x2 - x - 3) - (x + 2)(x + 1)2
= -2x3 + 2x2 + 6x - x2 + x + 3 - (x + 2)(x2 + 2x + 1)
= -2x3 + x2 + 7x + 3 - x3 - 2x2 - x - 2x2 - 2x - 2
= -3x3 - 3x2 + 4x + 1
2. (x + 2)(x - 1) - (x - 3)(x + 2) = 3
=> (x + 2)(x - 1 - x + 3) = 3
=> (x + 2).0 = 3
...(xem lại đề)
\(\left(x+2\right)\left(x-1\right)-\left(x-3\right)\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-1-x+3\right)=3\)
\(\Leftrightarrow2\left(x+2\right)=3\)
\(\Leftrightarrow x+2=\frac{3}{2}\)
\(\Leftrightarrow x=\frac{3}{2}-2\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(\left(x+2\right)\left(x^2-2x+1\right)+\left(1-x\right)\left(1+x+x^2\right)\)
\(=\left(x+2\right)\left(x-1\right)^2-\left(x-1\right)\left(1+x+x^2\right)\)
\(=\left(x-1\right)\left[\left(x+2\right)\left(x-1\right)-\left(1+x+x^2\right)\right]\)
\(=\left(x-1\right)\left(x^2+x-2-1-x-x^2\right)\)
\(=-3\left(x-1\right)\) \(=3\left(1-x\right)\)
[9x³(x² - 1) - 6x²(x² - 1) + 12x(x² - 1)] : 3x(x² - 1)
= [9x³(x² - 1) : 3x(x² - 1)] - [6x²(x² - 1) : 3x(x² - 1) + [12x(x² - 1) : 3x(x² - 1)]
= 3x² - 2x + 4
\(=\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1\)
\(\dfrac{5}{x+2}-\dfrac{x-1}{x-2}=\dfrac{12}{x^2-4}+1\left(x\ne-2;x\ne2\right)\)
\(< =>\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
suy ra
`5x-10-(x^2 +2x-x-2)=12+x^2 -4`
`<=>5x-10-x^2 -2x+x+2-12-x^2 +4=0`
`<=>-x^2 -x^2 +5x-2x+x-10+2+4=0`
`<=>-x^2 +4x-4=0`
`<=>x^2 -4x+4=0`
`<=>(x-2)^2 =0`
`<=>x-2=0`
`<=>x=2(ktmđk)`
vậy phương trình vô nghiệm
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow5\left(x-2\right)-\left(x-1\right)\left(x+2\right)=12+\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow5x-10-\left(x^2+x-2\right)=12+x^2-4\)
\(\Leftrightarrow-x^2+4x-8=x^2+8\)
\(\Leftrightarrow2x^2-4x+16=0\)
\(\Leftrightarrow2\left(x-1\right)^2+14=0\)
Do \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\14>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow2\left(x-1\right)^2+14>0\)
Vậy phương trình đã cho vô nghiệm
\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-2\right)\left(x+2\right)\)
\(=x^3-1-x\left(x^2-4\right)\)
\(=x^3-1-x^3+4x\)
\(=4x-1\)