Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x}+\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{x+4}\)
\(=\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}\)
=2/x
a thấy: 1/2 = 6/12 ; 2/3=6/9 ; 3/4=6/8 Như vậy nếu khối 3 có 12 phần thì khối 4 có 9 phần, khối 5 có 8 phần.
Tổng số phần bằng nhau 12+9+8 = 29 (phần)
Từ 570 đến 590 có các số chia hết cho 5 là: 570;575;580;585;590 trong đó có 580 chia hết cho 29.
Số học sinh lớp 3: 580:29x12 = 240 (hs)
Số học sinh lớp 4: 580:29x9= 180 (hs)
Số học sinh lớp 5: 580:29x8 = 160 (hs)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2010}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(\frac{-1}{x+3}=\frac{1}{2010}\)
\(\Rightarrow-\left(x-3\right)=2010\)
\(\Rightarrow x=-2013\)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2010}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(\Rightarrow\frac{1}{x}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(\Rightarrow\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+3}=\frac{1}{2010}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{2010}\)
\(\Rightarrow x=2007\)
=>\(\dfrac{1}{x}-\dfrac{1}{x+1}+.........+\dfrac{1}{x+2}-\dfrac{1}{x+3}-\dfrac{1}{x}=\dfrac{1}{2010}\)
(gạch đi những phân số trùng nhau )
=> \(\dfrac{-1}{x+3}=\dfrac{1}{2010}\)
=> -1=1 ; x+3 = 2010
Vì cả mẫu và tử đều phải là số âm mới có thể ra 1 phân số dương vì thế
=> x = -2013
=> \(\dfrac{-1}{-2013}=\dfrac{1}{2010}\)
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2010}\).
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(=-\frac{1}{x+3}=\frac{1}{2010}\)
\(x=2010-\left(-3\right)=2013\)
Ta có :
( x - 1 ) . ( x - 1 ) . ( x - 1 ) . ( x - 1 ) = ( x - 1 ) . ( x - 1 )
=> ( x - 1 )4 = ( x - 1 )2
=> ( x - 1 )4 - ( x - 2 )2 = 0
=> ( x - 1 )2 . [ ( x - 1 )2 - 1 ] = 0
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-1\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1\in\left\{-1;1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x\in\left\{0;2\right\}\end{cases}}\)