Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{-5}{7}+\dfrac{-2}{7}+\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{-1}{5}=-1+1-\dfrac{1}{5}=\dfrac{-1}{5}\)
\(\Rightarrow\left[3\left(x+1\right)+8\right]⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Rightarrow x\in\left\{-9;-5;-3;-2;0;1;3;7\right\}\)
= (12-12) + (11+10) - (9+8) - (7+5) - (4+3) + (2-1)
= 0 + 21 - 17 - 12 - 7 + 1
= 21- 17 - 12 - 7 +1
= 4 - 12 - 7 +1
= -8 - 7 + 1
= -15 + 1
= -14
hết
= 12 - 12 + 11 + ( 10 - 9 ) + ( 8 - 7 ) + ( 5 - 4 ) + 3 + ( 2 -1 )
= 0 + 11 + 1 + 1 + 1 + 3 + 1
= 11 +1 + 1 + 1 + 3 + 1
= 12 + 1 + 1 + 3 + 1
= 13 + 1 + 3 + 1
= 14 + 3 + 1
= 17 + 1
= 18
Đáp án đây nha bạn !!!
Chúc bạn học tốt !!!
\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)
\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)
\(a,S=3+3^2+3^3+...+3^{20}\)
Ta thấy:\(3+3^2=12⋮12\)
\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)
\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)
\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)
\(\dfrac{-1}{12},\dfrac{-3}{4},\dfrac{2}{9},\dfrac{7}{6}\)
\(x\left(2x-1\right)\left(3x-126\right)=0\Rightarrow\hept{\begin{cases}x=0\\2x-1=0\\3x-126=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x=1\\3x=126\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=\frac{1}{2}\\x=42\end{cases}}\)
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{97}{98}\cdot\dfrac{98}{99}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot98}{2\cdot3\cdot4\cdot...\cdot99}\)
\(=\dfrac{1}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}=\dfrac{100}{2}=50\)
`@` `\text {Ans}`
`\downarrow`
\(\left(x-\dfrac{1}{5}\right)^2+1=3,5\div7\%\)
`=> (x-1/5)^2 + 1 = 3,5 \div 0,07`
`=> (x-1/5)^2 +1=50`
`=> (x-1/5)^2 = 49`
`=> (x-1/5)^2 = (+-7)^2`
`=>`\(\left[{}\begin{matrix}x-\dfrac{1}{5}=7\\x-\dfrac{1}{5}=-7\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=7+\dfrac{1}{5}\\x=-7+\dfrac{1}{5}\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{36}{5}\\x=-\dfrac{34}{5}\end{matrix}\right.\)
Vậy, `x={36/5; -34/5}.`
Mình cảm ơn:3!