Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{3}{2\cdot2}=\dfrac{3}{4}\\ A=\dfrac{3}{2\cdot5}=\dfrac{3}{10}\\ A=\dfrac{3}{2\cdot3}=\dfrac{1}{2}\)
\(\left(\frac{2}{3}x-1\right)\left(\frac{3}{4}x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x=1\\\frac{3}{4}x=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}}\)
Phương trình tích này:)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{3}x-1=0\\\frac{3}{4}x+\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{2}{3}\end{cases}}\)
Em phải tự làm rồi đối chiếu kết quả xem có đúng ko :). Nếu ko thì kiểm tra sẽ ko làm đc bài :)
\(a,\left\{{}\begin{matrix}Az\perp Ox\\Ox\perp Oy\left(\widehat{xOy}=90^0\right)\end{matrix}\right.\Rightarrow Az//Oy\)
\(b,\widehat{xOm}=\dfrac{1}{2}\widehat{xOy}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \widehat{nAx}=\dfrac{1}{2}\widehat{xAz}=\dfrac{1}{2}\cdot90^0=45^0\left(t/c.phân.giác\right)\\ \Rightarrow\widehat{xOm}=\widehat{nAx}\left(=45^0\right)\)
Mà 2 góc này ở vị trí đồng vị nên \(Om//An\)
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
Châu Âu có ngành công nghiệp phát triển sớm nhất thế giới.
Nhiều sản phẩm công nghiệp nổi tiếng, chất lượng cao.
Sản xuất được phân bố tập trung
Một số ngành công nghiệp nổi tiếng có chất lượng cao như: Luyện kim, hóa chất, sản xuất ô tô, chế biến thực phẩm…
Các ngành công nghiệp mới, công nghiệp mũi nhọn phát triển, như điện tử, cơ khí chính xác, tự động hóa, công nghiệp hàng không…
a/ Xét tứ giác AEDC có
IA=ID; IC=IE => AEDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> ED//AC và ED=AC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
b/
Ta có AEDC là hbh => AE//DC và AE=DC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Mà DC=DB => AE=BD
\(DB\in DC\) => AE//DB
=> AEBD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau thì là hbh)
=> EB=AD và EB//AD (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Ta có EB//AD mà \(AD\perp BC\Rightarrow EB\perp BC\)
c/ Ta có AEBD là hbh => JA=JB (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => J là trung điểm AB
d/ Xét \(\Delta ABD\)
JA=JB; IA=ID => IJ là đường trung bình của \(\Delta ABD\) => IJ//BC
\(\Rightarrow IJ=\frac{DB}{2}\)
Ta có DB=DC (Trong tg cân đường cao từ đỉnh đồng thời là đường trung tuyến)\(\Rightarrow DB=\frac{BC}{2}\)
\(\Rightarrow IJ=\frac{DB}{2}=\frac{\frac{BC}{2}}{2}=\frac{1}{4}BC\)
e/
Xét HCN AEBD có
\(\Rightarrow JE=JD=\frac{ED}{2}\) (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông EKD có
\(JE=JD\Rightarrow IK=\frac{ED}{2}=JE=JD\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
\(\Rightarrow\Delta AJK;\Delta BJK\) cân tại J \(\Rightarrow\widehat{BAK}=\widehat{AKJ};\widehat{ABK}=\widehat{BKJ}\) (góc ở đáy tg cân) (1)
Xét \(\Delta AKB\)
\(\widehat{BAK}+\widehat{ABK}+\widehat{AKB}=180^o\) (tổng các góc trong của tg = 180 độ)
\(\Rightarrow\widehat{BAK}+\widehat{ABK}+\widehat{AKJ}+\widehat{BKJ}=180^o\)(2)
Từ (1) và (2) \(\Rightarrow2\left(\widehat{AKJ}+\widehat{BKJ}\right)=180^o\Rightarrow\widehat{AKJ}+\widehat{BKJ}=\widehat{AKB}=90^o\)
f/
Xét tg vuông IBD và tg vuông ICD có
ID chung
DB=DC (cmt)
\(\Rightarrow\Delta IBD=\Delta ICD\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{IBD}=\widehat{ICD}\) (1)
Xét tg vuông IDK
\(\widehat{IDK}+\widehat{CID}=90^o\)
Xét tg vuông ICD
\(\widehat{ICD}+\widehat{CID}=90^o\)
\(\Rightarrow\widehat{IDK}=\widehat{ICD}\) (cùng phụ với \(\widehat{CID}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{IDK}=\widehat{IBD}\)
- Để định dạng nội dung của một (hoặc nhiều ô tính) ta cần chọn ô tính (hoặc các ô tính) đó.
- Định dạng không làm thay đổi nội dung của các ô tính
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{99}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-9}{10}.\frac{-10}{11}.\frac{-11}{12}...\frac{-98}{99}.\frac{-99}{100}\)
\(=-\frac{9.10.11....98.99}{10.11.12...99.100}=-\frac{9}{100}\)
đặt \(A=2+2^2+2^3+...+2^{2018}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{2019}\)
\(\Rightarrow2A-A=2^{2019}-2\)
\(\Rightarrow A=2^{2019}-2\)
Ta có: \(\text{| x - 1,5 | + | 2,5 - x | = 0}\)
Ta lại có: \(\left|x-1,5\right|\ge0\) (1)
\(\left|2,5-x\right|\ge0\) (2)
Từ (1) và (2) \(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)(vô lý) Vì \(x=x;1,5\ne2,5\)
Vậy không tồn tại giá trị x thõa mãn.
Mình làm rồi nha. Chúc bạn học tốt!!!