Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n) \(\left|3-x\right|+x^2-x\left(x+4\right)=0\)
\(\Rightarrow\left|3-x\right|+x^2-x^2-4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x-4x=0\left(đk:3-x\ge0\right)\\-\left(3-x\right)-4x=0\left(đk:3-x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(đk:x\le3\right)\\x=-1\left(đk:x>3\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=\dfrac{3}{5}\)
m) \(\left(x-1\right)^2+\left|x+21\right|-x^2-13=0\)
\(\Rightarrow x^2-2x+1+\left|x+21\right|-x^2-13=0\)
\(\Leftrightarrow-2x-12+\left|x+21\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-12+x+21=0\left(đk:x+21\ge0\right)\\-2x-12-\left(x+21\right)=0\left(đk:x+21< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(đk:x\ge-21\right)\\x=-11\left(đk:x< -21\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=9\)
e) \(\left|5x\right|=3x-2\)
\(\Rightarrow5\cdot\left|x\right|=3x-2\)
\(\Leftrightarrow5\cdot\left|x\right|-3x=-2\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3x=-2\left(đk:x\ge0\right)\\5\cdot\left(-x\right)-3x=-2\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(đk:x\ge0\right)\\x=\dfrac{1}{4}\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\varnothing\)
g) \(\left|-2,5x\right|=x-12\)
\(\Rightarrow2,5\cdot\left|x\right|=x-12\)
\(\Leftrightarrow2x5\cdot\left|x\right|-x=-12\)
\(\Leftrightarrow\left[{}\begin{matrix}2,5x-x=-12\left(đk:x\ge0\right)\\2,5\cdot\left(-x\right)-x=-12\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\left(đk:x\ge0\right)\\x=\dfrac{24}{7}\left(đk:x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x\in\varnothing\)
a) ta có
|9+x| = 9+x thì 9+x ≥ 0 ⇔ x ≥ -9
|9+x|=-(9-x)thì 9+x <0 ⇔ x<-9
th1 với x ≥ -9
9+x=2x
⇔ 9=2x-x
⇔ 9=x (tmđk)
th2 với x < -9
-(9+x)=2x
⇔ -9-x=2x
⇔ -x-2x=9
⇔ -3x=9
⇔ x=-2 (ktm)
vậy phương trình có tập nghiệm là S+{ 9}
b) Với : x < -6 , phương trình có dạng :
- x - 6 = 2x + 9
<=> -3x = 15
<=> x = - 5 ( không thỏa mãn )
Với : x ≥ - 6 , phương trình có dạng :
x + 6 = 2x + 9
<=> x = - 3 ( thỏa mãn)
Vậy , phương trình nhận : x = - 3 làm nghiệm duy nhất
c) Với : x < 0 , phương trình có dạng :
- 5x = 3x - 2
<=> -8x = -2
<=> x = \(\dfrac{1}{4}\) ( không thỏa mãn )
Với : x ≥ 0 , phương trình có dạng :
5x = 3x - 2
<=> 2x = -2
<=> x = -1 ( không thỏa mãn )
Vậy, phương trình đã cho vô nghiệm
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
a ) \(\left(5x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{5}\\x=7\end{matrix}\right.\)
b ) \(\left(x^2-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-3\end{matrix}\right.\)
c )\(x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
d ) \(x^2+x-12=0\)
\(\Leftrightarrow x^2-4x+3x-12\)
\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
e ) \(15\left(x+9\right)\left(x-3\right)\left(x+21\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=3\\x=-21\end{matrix}\right.\)
g ) \(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-2\end{matrix}\right.\)
i ) \(x^4+2x^3-2x^2+2x-3=0\)
\(\Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\)
\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^3-x^2+x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\\x=-3\end{matrix}\right.\)
h) \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+3x+2x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
1,x^2-(x+1)(x-1)=0
x^2-x^2+1+0
1=0(vô lý)
2,5x^3+3x^2+3x+1=4x^2
x^3+3x^2+3x+1=0
(x+1)=0
x=-1
3,x^3+x^2=0
x^2(x+1)=0
x=0 or x=-1
4,2x^3-12x^2+18x=0
x^3-6x^2+9x=0
x(x^2-6x+9)=0
x(x-3)^2=0
x=0 or x=3
5,5x^2-4(x^2-2x+1)+20=0
5x^2-4x^2+8x-4+20=0
x^2+8x+16=0
(x+4)^2=0
x=-4
6,5x(x-3)+7x-21=0
5x(x-3)+7(x-3)=0
(5x+7)(x-3)=0
5x-7=0 or x-3=0
x=7/5 or x=3
7,2x^3-50x=0
2x(x^2-25)=0
2x(x-5)(x+5)=0
x=0 or x=5 or x=-5
8,(4x-1)^2-9(x+3)^2=0
(4x-1)^2-3^2*(x+3)^2=0
(4x-1)^2-(3x+9)^2=0
(4x-1-3x-9)(4x-1+3x+9)=0
(x-10)(7x+8)=0
x=10 or x=-8/7
9,3(x-2)^2-x+2=0
3*(x-2)*(x-2)-(x-2)=0
(3x-6)(x-2)-(x-2)=0
(x-2)(3x-6-1)=0
(x-2)(3x-7)=0
x=2 or x=7/3
10,9x^2+6x-8=0
9x^2+12x-6x-8=0
3x(3x-2)+4(3x-2)=0
(3x+4)(3x-2)=0
3x+4=0 or 3x-2=0
x=-4/3 or x=2/3
\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
d, 2x2-5x-3 = 0
\(\Leftrightarrow\)2x2-6x+x-3= 0
\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0
\(\Leftrightarrow\)2x(x-3) + (x-3) = 0
\(\Leftrightarrow\)(x-3) (2x+1) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)
xét x+21\(\ge\)0 thì x\(\ge\)-21
khi đó phương trình trở thành \(x^2-2x+1+x+21-x^2-13=0\)
<=>-x+9=0
<=>x=9(TM)
xét x+21<0 thì x<-21
khi đó phương trình trở thành x2-2x+1+-x-21-x2-13=0
<=>-3x-33=0
<=>x=-11(loại)
vậy nghiệm của pt là x=9
Lập bảng xét dấu :
+) Nếu \(x\ge-21\Leftrightarrow|x+21|=x+21\)
\(pt\Leftrightarrow\left(x-1\right)^2+\left(x+21\right)-x^2-13=0\)
\(\Leftrightarrow x^2-2x+1+x+21-x^2-13=0\)
\(\Leftrightarrow-x+9=0\)
\(\Leftrightarrow-x=-9\)
\(\Leftrightarrow x=9\left(tm\right)\)
+) Nếu \(x< -21\Leftrightarrow|x+21|=-x-21\)
\(pt\Leftrightarrow\left(x-1\right)^2+\left(-x-21\right)-x^2-13=0\)
\(\Leftrightarrow x^2-2x+1-x-21-x^2-13=0\)
\(\Leftrightarrow-3x-33=0\)
\(\Leftrightarrow-3x=33\)
\(\Leftrightarrow x=-11\)( loại )
Vậy phương trình có tập nghiệm \(S=\left\{9\right\}\)