Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x-1\right)\\ =x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x-1\right)^2\\ =6x^2+2-6\cdot\left(x^2-2x+1\right)\\ =6x^2+2-6x^2+12x-6\\ =12x-4\)
\(2)x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\\ =x\left(x^2-1\right)-\left(x^3+1\right)\\ =x^3-x-x^3-1\\=-x-1\)
\(3)\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-4\right)\left(x+4\right)\\ =x^3-3x^2+3x-1-(x^3+8)+3\cdot\left(x^2-16\right)\\ =x^3-3x^2+3x-1-x^3-8+3x^2-48\\ =3x-55\)
a: =x^2+2x-15-x^2+4
=2x-11
b: =x^2-4x+4+x^2+6x+9-2(x^2-1)
=2x^2+2x+13-2x^2+2
=2x+15
c: \(=x^2-4x+4+x^3-1-x^3+4x\)
=x^2+3
d: \(=\left(2x+5-2x+1\right)^2=6^2=36\)
e: \(=x^3+1-x^3+1-x^2=2-x^2\)
1) (x + 1)2 + (x - 1)(x2 + x + 1) + (x - 1)3
= x2 + 2x + 1 + x3 - 1 + x3 - 3x2 + 3x - 1
= 2x3 - 2x2 + 5x + 1
2) (x - 2)2 + (2x + 1)2 + (x + 1)3
= x2 - 4x + 4 + 4x2 + 4x + 1 + x3 + 3x2 + 3x + 1
= x3 + 8x2 + 3x + 6
3) (x + 1)(x2 - x + 1) - (x - 3)2
= x3 + 1 - x2 + 6x - 9
= x3 - x2 + 6x - 8
4) (3x + 2)2 + (2x - 1)2 - (x + 3)2
= 9x2 + 12x + 4 + 4x2 - 4x + 1 - x2 - 6x - 9
= 12x2 + 2x - 4
\(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(P=\left[\left(x+2\right)+\left(x-2\right)\right]\left[\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]-2x^3-24x\)
\(P=2x\left(x^2+4x+4-x^2+4+x^2-4x+4\right)-2x^3-24x\)
\(P=2x\left(x^2+12\right)-2x^3-24x\)
\(P=2x^3+24x-2x^3-24x\)
\(P=0\)
=> P không phụ thuộc vào biến x
\(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(Q=\left[\left(x-1\right)-\left(x+1\right)\right]\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(Q=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6x^2-6\)
\(Q=-2\left(3x^2+1\right)+6x^2-6\)
\(Q=-6x^2-2+6x^2-6\)
\(Q=-8\)
=> Q không phụ thuộc vào biến x
\(N=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(N=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
\(N=0\)
=> N không phụ thuộc vào biến y
\(M=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
\(M=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
\(M=0\)
=> M không phụ thuộc vào biến x
\(H=\left(x+1\right)^3-\left(x-1\right)^3-3\left[\left(x-1\right)^2+\left(x+1\right)^2\right]\)
\(H=x^3+3x^2+3x+1-x^3+3x^2-3x+1-3\left(x^2-2x+1+x^2+2x+1\right)\)
\(H=6x^2+2-3\left(2x^2+2\right)\)
\(H=6x^2+2-6x^2-6\)
\(H=-4\)
=> H không phụ thuộc vào biến x
Bài 3:
a: \(=\left(x^3-1\right)\left(x^3-8\right)\)
\(=\left(1-1\right)\left(1-8\right)=0\)
b: \(=x^3-3x^2+3x-1-4x^3+4x+3\left(x^3-1\right)\)
\(=-3x^3-3x^2+7x-1+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot4-14-4=-30\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)