(x + 1)2 – ( 2x – 1)2 + 3(x – 2)(x + 2) với x = 1

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(\left(x+1\right)^2-\left(2x-1\right)^2+3\left(x-2\right)\left(x+2\right)\)

\(=\left(x^2+2x+1\right)-\left(4x^2-4x+1\right)+3\left(x^2-4\right)\)

\(=\left(x^2-4x^2+3x^2\right)+\left(2x+4x\right)+\left(1-1-12\right)=6x-12=-6\)

14 tháng 3 2016

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1

bài 2: =(x-3)2+1

vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

24 tháng 10 2019

\(3-\left(x-1\right)=2-2\left(x-3\right)\)

\(3-x+1=2-2x+6\)

\(4-x=8-2x\)

\(4-x-8+2x=0\)

\(x-4=0\)

\(x=4\)

24 tháng 10 2019

3-(x-1)=2-2(x-3)=>3-2=x-1-2(x-3)=>1=x-1-2x+6

=>1=-x+5=>-x=1-5=-4=>x=4

Chúc bạn học tốt nhớ k cho mik nha.

10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

15 tháng 7 2016

giúp mình tí nha

9 tháng 7 2015

bình tĩnh tách từng câu ra nhé bạn ới. mik sắp xỉu