\(\ge\) 0 Thỏa mãn a2 +b2 =4 Tìm GTLN của M=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)(bđt cosi vs hai số dương)

=> 4\(\ge2ab\) <=> 2\(\ge ab\) <=> \(\frac{2}{ab}\ge1\) (*) => \(\frac{2}{\sqrt{ab}}\ge\sqrt{2}\)

AD bđt cosi vs hai số dương có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\) \(\ge\sqrt{2}\) (**).

Từ (*),(**) => \(\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}\ge\sqrt{2}+1\)

\(M=\frac{ab}{a+b+2}=\frac{1}{\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}}\le\frac{1}{\sqrt{2}+1}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a^2=b^2\\\frac{1}{a}=\frac{1}{b}\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b\\a=b\end{matrix}\right.< =>a=b=\sqrt{2}\)(vì a,b>0)

Vậy maxM=\(\sqrt{2}-1\)

21 tháng 8 2019

Tai sao từ \(\frac{2}{ab}>1=>\frac{2}{\sqrt{ab}}>\sqrt{2}\)

23 tháng 6 2017

Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\Rightarrow2ab=\left(a+b\right)^2-4\)

Ta có: \(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

\(\le\sqrt{2\left(a^2+b^2\right)}-2=2\sqrt{2}-2\)

\(\Rightarrow2M\le2\sqrt{2}-2\Rightarrow M\le\sqrt{2}-1\)

Đẳng thức xảy ra khi \(a=b=\sqrt{2}\)

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

18 tháng 9 2016

Ta có a2 + b = 4 <=> 2ab = (a + b)2 - 4

Ta có \(\frac{ab+a+b+2}{a+b+2}=1+\frac{ab}{a+b+2}\)

\(1+\frac{\left(a+b\right)^2-4}{2\left(a+b+2\right)}\)

\(1+\frac{a+b-2}{2}\)(1)

Mà \(\frac{\left(a+b\right)^2}{2}\le a^2+b^2=4\)

<=> a + b \(\le\)\(2\sqrt{2}\)

Từ đó <=> (1) \(\le\)\(\sqrt{2}\)

Từ đó => P \(\sqrt[4030]{2}\)

Đạt được khi a = b = \(\sqrt{2}\)

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

2 tháng 3 2018

\(P=\frac{a^2}{a^3+abc}+\frac{b^2}{b^3+abc}+\frac{c^2}{c^3+abc}.\) " nhân cả tử cả mẫu cho a ,   b ,  c lần lượt

\(\frac{a^2}{a^3+abc}\le\frac{1}{4}\left(\frac{a^2}{a^3}+\frac{a^2}{abc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{a}{bc}\right)\left(cosishaw\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

từ đề bài ta suy ra

\(bc=\frac{a^2+B^2+c^2}{a};ac=\frac{a^2+B^2+c^2}{b};ab=\frac{a^2+b^2+c^2}{c}.\)

\(\frac{a}{bc}=\frac{a}{\frac{a^2+B^2+c^2}{a}}=\frac{a^2}{a^2+B^2+c^2}\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

từ đề bài suy ra tiếp 

\(a=\frac{a^2+b^2+c^2}{bc};\frac{1}{a}=\frac{1}{\frac{a^2+b^2+c^2}{bc}}=\frac{bc}{a^2+B^2+c^2}\) " tương tự với các số hạng 

suy ra 

\(P\le\frac{1}{4}\left(\frac{bc+ac+Ab}{a^2+b^2+c^2}+1\right)\)

\(bc+ac+ab\le a^2+B^2+c^2\left(cosi\right)\)

\(P\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)

max của P là 1/2

dấu = xảy ra khi a=b=c=3

thử thay vào ta được

\(\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}=\frac{a}{2a^2}+\frac{a}{2a^2}+\frac{a}{2a^2}=\frac{3}{2a}=\frac{3}{2.3}=\frac{1}{2}\) " đúng "

2 tháng 3 2018

sửa lại cái đề bài thành  \(a^2+b^2+c^2=abc\)  đi

không bọn não chó nó tích sai cho tao đấy dcmmm 

bọn ngu học :)