K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Ta có: A(4; -h) mà A ∈ parabol

Giải sách bài tập Toán 10 | Giải sbt Toán 10

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi phương trình chính tắc của parabol là: \({y^2} = 2px\left( {p > 0} \right)\)

Vì \(AB = 40cm\) và \(h = 30cm\) nên \(A\left( {30;20} \right)\)

Do \(A\left( {30;20} \right)\) thuộc parabol nên ta có: \({20^2} = 2p.30 \Rightarrow p = \frac{{20}}{3}\)

Vậy parabol có phương trình chính tắc là: \({y^2} = \frac{{40}}{3}x\)

NV
5 tháng 1 2021

Không có hình vẽ bạn?

6 tháng 1 2021

Hình P Đi xuống á 

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(\widehat {D{A_1}{C_1}} = \widehat {{A_1}D{B_1}} + \widehat {D{B_1}{A_1}} \Rightarrow \widehat {{A_1}D{B_1}} = {49^ \circ } - {35^ \circ } = {14^ \circ }\)

Áp dụng định lí sin trong tam giác \({A_1}D{B_1}\) , ta có:

\(\begin{array}{l}\frac{{{A_1}D}}{{\sin {B_1}}} = \frac{{{A_1}{B_1}}}{{\sin D}} \Leftrightarrow \frac{{{A_1}D}}{{\sin {{35}^ \circ }}} = \frac{{12}}{{\sin {{14}^ \circ }}}\\ \Rightarrow {A_1}D = \sin {35^ \circ }.\frac{{12}}{{\sin {{14}^ \circ }}} \approx 28,45\end{array}\)

Áp dụng định lí sin trong tam giác \({A_1}D{C_1}\) , ta có:

\(\begin{array}{l}\frac{{{A_1}D}}{{\sin {C_1}}} = \frac{{{C_1}D}}{{\sin {A_1}}} \Leftrightarrow \frac{{28,45}}{{\sin {{90}^ \circ }}} = \frac{{{C_1}D}}{{\sin {{49}^ \circ }}}\\ \Rightarrow {C_1}D = \sin {49^ \circ }.\frac{{28,45}}{{\sin {{90}^ \circ }}} \approx 21,47\end{array}\)

Do đó, chiều cao CD của tháp là: \(21,47 + 1,2 = 22,67\;(m)\)

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\)....
Đọc tiếp

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).

Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\). Tựa đầu bút chì vào dây, di chuyển điểm M trên tấm bìa và giữ sao cho dây luôn căng, đoạn AM ép sát vào thước, khi đó M sẽ gạch lên tấm bìa một đường (H) (xem hình 6b)

a) Chứng tỏ rằng khi M di động, ta luôn có \(M{F_1} - M{F_2} = 2a\)

b) Vẫn đính một đầu dây vào đầu A của thước nhưng đổi chỗ cố định đầu dây còn lại vào \({F_1}\), đầu B của thước trùng với \({F_2}\) sao cho đoạn thẳng BA có thể quay quanh \({F_2}\)và làm tương tự như lần đầu để bút chì M vẽ được một nhánh khác của đường (H) (hình 6c). Tính \(M{F_2} - M{F_1}\)

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Khi điểm trùng với điểm ta có:

\(M{F_1} - M{F_2} = A{F_1} - A{F_2} = AB - A{F_2} = d - l = 2a\)

b) Tương tự khi điểm trùng với điểm ta có:

\(M{F_2} - M{F_1} = A{F_2} - A{F_1} = AB - A{F_1} = d - l = 2a\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Gọi chiều cao bức tường DG là x (m) (x>0)

Chiều dài chiếc thang là x+1 (m)

Khoảng cách từ chân thang sau khi bác Nam điều chỉnh là: \(EG = \frac{{DG}}{{\sqrt 3 }} = \frac{{x\sqrt 3 }}{3}\) (m)

Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:

\(BC = \sqrt {{{\left( {x + 1} \right)}^2} - {x^2}} \)(m)

Bác Nam dịch chuyển chân thang vào gần chân tường thêm 0,5 m nên ta có:

\(\sqrt {{{\left( {x + 1} \right)}^2} - {x^2}}  - 0,5 = \frac{{x\sqrt 3 }}{3}\)

\(\begin{array}{l} \Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2} - {x^2}}  = \frac{x}{{\sqrt 3 }} + 0,5\\ \Leftrightarrow \sqrt {2x + 1}  = \frac{x}{{\sqrt 3 }} + 0,5\left( * \right)\end{array}\)

Ta có \(\frac{x}{{\sqrt 3 }} + 0,5 \ge 0 \Leftrightarrow \frac{x}{{\sqrt 3 }} \ge  - \frac{1}{2}\)\( \Leftrightarrow x \ge  - \frac{{\sqrt 3 }}{2}\) (Luôn đúng do x>0)

Ta bình phương hai vế (*) ta được:

\(\begin{array}{l}2x + 1 = {\left( {\frac{x}{{\sqrt 3 }} + 0,5} \right)^2}\\ \Leftrightarrow 2x + 1 = \frac{{{x^2}}}{3} + \frac{x}{{\sqrt 3 }} + 0,25\\ \Leftrightarrow \frac{{{x^2}}}{3} + \left( {\frac{{\sqrt 3 }}{3} - 2} \right)x - \frac{3}{4} = 0\\ \Leftrightarrow \left[ \begin{array}{l}x \approx 4,7\left( {tm} \right)\\x \approx  - 0,5\left( {ktm} \right)\end{array} \right.\end{array}\)

Vậy chiều cao của bức tường là 4,7 m.

Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3    Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3 cánh cửa chia căn phòng ra làm 3 phần có diện tích bằng nhau. Sau đây là sơ đồ cánh cửa tại các vị trí khác nhau, khi nhìn từ góc...
Đọc tiếp

Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3

 

 

  •  
  • Một cửa quay bao gồm 3 cánh cửa có khả năng quay trong một căn phòng hình tròn. Đường kính của căn phòng này là 2 mét (200cm). 3 cánh cửa chia căn phòng ra làm 3 phần có diện tích bằng nhau. Sau đây là sơ đồ cánh cửa tại các vị trí khác nhau, khi nhìn từ góc thẳng đứng phía trên:
  • 2 phần cửa ra vào (phần nét đứt) có kích thước bằng nhau. Nếu phần cửa ra và cửa vào có kích cỡ quá lớn, các cánh cửa sẽ không thể ngăn cách không gian; một luồng không khí có thể đi thẳng qua 2 cánh cửa, từ bên ngoài tòa nhà vào bên trong tòa nhà (gây tăng/giảm nhiệt độ trong nhà một cách không mong muốn). Nhìn hình dưới đây để hình dung ra đường đi của luồng không khí trong trường hợp kích cỡ của 2 cánh cửa quá lớn.

    Vậy, chiều dài tối đa của đường cong nét đứt của mỗi phần cửa ra/vào là gì, để không khí không thể đi thẳng từ cửa ra tới cửa vào và ngược lại?

1
9 tháng 11 2016

oho