Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)
nên \(\widehat{ABF}=\widehat{ACE}\)
Xét ΔABF và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABF}=\widehat{ACE}\)(cmt)
BF=CE(gt)
Do đó: ΔABF=ΔACE(c-g-c)
Suy ra: AF=AE(Hai cạnh tương ứng)
Xét ΔAFE có AF=AE(Cmt)
nên ΔAFE cân tại A(Định nghĩa tam giác cân)
a: \(\widehat{BOC}=\dfrac{1}{4}\cdot60^0=15^0\)
\(\widehat{AOB}=45^0\)
b: Vì \(\widehat{AOC}+\widehat{AOD}=90^0\)
nên hai góc này phụ nhau
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(11;-2\right);\overrightarrow{BC}=\left(9;-6\right)\)
\(\Rightarrow AB=2\sqrt{5};AC=5\sqrt{5};BC=3\sqrt{13}\)
Gọi D là chân đường phân giác trong góc A trên BC
\(\frac{DB}{DC}=\frac{AB}{AC}=\frac{2}{5}\Rightarrow BD=\frac{2}{5}CD=\frac{2}{7}BC\Rightarrow\overrightarrow{BD}=\frac{2}{7}\left(9;-6\right)\)
\(\Rightarrow D\left(\frac{46}{7};\frac{44}{7}\right)\Rightarrow\overrightarrow{AD}=\left(\frac{32}{7};\frac{16}{7}\right)=\frac{16}{7}\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng AD nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AD:
\(1\left(x-2\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+6=0\)
2.
Đường thẳng d có 1 vtpt là \(\left(1;3\right)\)
Gọi vtpt của d' là \(\left(a;b\right)\Rightarrow cos45^0=\frac{\left|a+3b\right|}{\sqrt{10\left(a^2+b^2\right)}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow a^2+6ab+9b^2=5a^2+5b^2\)
\(\Leftrightarrow4a^2-6ab-4b^2=0\Leftrightarrow\left(2a+b\right)\left(a-2b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=-2a\\a=2b\end{matrix}\right.\)
Chọn \(a=2\Rightarrow\left[{}\begin{matrix}b=-4\\b=1\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}1\left(x+2\right)-2\left(y-0\right)=0\\2\left(x+2\right)+1\left(y-0\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2y+2=0\\2x+y+4=0\end{matrix}\right.\)
Cho 2 góc XOZ và ZOY kề nhau biết tỉ số số đo 2 góc là 13/5 và hiệu giữa chúng là 40. Tìm hai góc XOY và YOZ.
Gọi: góc XOZ và góc ZOY lần lượt là a và b:
Ta có: a:b = 13:5 và a : b = 40
Vậy: a:13 = b:5 Suy ra: a - b/ 13-5 = 40/8 = 5
a:13 = 5 suy ra a = 65
b:5 = 5 suy ra b= 25
( Mong bạn học tốt, bài này dựa vào tính chất của dãy tỉ số bằng nhau nhé bạn).
a: Xét ΔABC có
AD là đường cao
BE là đường cao
AD cắt BE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: CI⊥AB tại K
hay \(\widehat{AKC}=90^0\)
b: Xét tứ giác CDIE có
\(\widehat{CDI}+\widehat{CEI}=180^0\)
Do đó: CDIE là tứ giác nội tiếp
Suy ra: \(\widehat{DIE}+\widehat{ECD}=180^0\)
hay \(\widehat{DIE}=140^0\)
=>\(\widehat{BID}=40^0\)
Ta phải bớt đi 9 đơn vị vì:
-Thương là số có 2 chữ số nên thương phải là 10 trở lên.
Vậy số chia hết cho 9 mà có thương là 10 là:
10x9=90,
Nó cũng có thể là 99 bạn nhé
Vậy số A là 90+5=95, nếu bớt 9 đơn vị thì số mới là:
95-9=86, 86:9=9 dư 5
Vậy phải bớt đi 9 đơn vị
Gọi thương là b;số a phải bớt là n
Ta có a:9=b dư 5
a=9b+5
Ta có (a-n):9=(b-1) dư 5
a-n=9*(b-1)+5
a-n=9b-9+5
a-n=9b-4
a-n=9b+5-9
a-n=a-9
=>n=9
Vậy a phải bớt đi 9 đơn vị
???
Nhật bản
Võ Judo và Karate là hai môn võ của nước Nhật Bản nha
Chứ ko có vojuno và tarate đâu
Chúc bạn học tốt