\(\ne\)4, x\(\ne\) 9 tìm MinP = 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)

 

18 tháng 10 2018

Ukm ko để ý

14 tháng 10 2018

ĐỀ THI VÀO 10 ĐÓ CẢM ƠN MN TRƯỚC NHA:))

31 tháng 5 2017

éo biết

17 tháng 7 2019

Có ai ko, giúp mình với, mai mình cần rồi

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)

 

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

Sửa đề: A>-4

\(A=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x-1+1-\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(A+4=\dfrac{x-2\sqrt{x}+1+4\sqrt{x}}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}>0\)

=>A>-4

8 tháng 6 2019

a/ \(=4x-\sqrt{\left(x-2\right)^2}=4x-x+2=3x+2\)

b/ \(=3x+\sqrt{\left(x+3\right)^2}=3x+x+3=4x+3\)

c/ xem lại đb

d/ \(=\frac{\sqrt{\left(x+2\right)^2}}{x+2}=\frac{x+2}{x+2}=1\)

7 tháng 12 2017

\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\left(1-\sqrt{x}\right)}{\sqrt{x}+x}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}:\left(\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}+1\right)\sqrt{x}}\right)\)

\(=\dfrac{x-1}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{\left(1+\sqrt{x}\right)^2}{\sqrt{x}}\)

ma \(\left(1+\sqrt{x}\right)^2>4\) voi moi x

\(\Rightarrow A>4\)