K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

`(x^2+x+1)/(x-2)=(x^2+x-6+7)/(x-2)=(x^2-2x+3x-6+7)/(x-2)=(x(x-2)+3(x-2)+7)/(x-2)=x+3+7/(x-2)=x-2+7/(x-2)+5`

Áp dụng cosi:`x-2+7/(x-2)>=2\sqrt7` `=>A>=\sqrt7+5`

Dấu "=" `<=>(x-2)^2=7<=>x=\sqrt7+2(do \ x>2)`

15 tháng 4 2017

. P= x^2 +1/ x^2+ 2 +y^2+ 1/y^2 +2 (*) áp dụng bđt cosi cho các số dương x^2; y^2 và 1/x^2 và 1/y^2 được x^2+y^2 >= 2xy (1) và 1/X^2 +1/y^2 >=2/xy (2) thay vào (*) P >= 4+2xy+2/(xy) (**) Do x,y>0 áp dụng bđt cosi cho 2 số dương 2xy và 2/ (xy) ta được 2xy+2/(xy)>=2 căn (2xy . 2/(xy))=2 (3) thay trở lại (**) được P>= 4+2=6 Dấu bằng sảy ra khi dấu bằng ở (1)(2)(3) cùng đồng thời sảy ra tức là (1) x=y; (2) 1/x=1/y ;(3) xy=1/(xy) => x=y Vậy GTNN của biểu thức là 6 sảy ra khi x=y

16 tháng 4 2017

sai chỗ \(2xy+\dfrac{2}{xy}\ge2\sqrt[]{\dfrac{2}{xy}.2xy}=4\)

\(\Rightarrow A\ge4+4=8\)

31 tháng 5 2018

\(P=\dfrac{x^2+x+1}{x^2+2x+1}\) ( x # -1)

\(P=\dfrac{\left(x+1\right)^2-x}{\left(x+1\right)^2}\)

\(P=1-\dfrac{x}{\left(x+1\right)^2}\)

\(P=1+\dfrac{1}{\left(x+1\right)^2}-\dfrac{1}{x+1}\)

\(P=\left[\dfrac{1}{\left(x+1\right)^2}-2.\dfrac{1}{x+1}.\dfrac{1}{2}+\dfrac{1}{4}\right]+1-\dfrac{1}{4}\)

\(P=\left(\dfrac{1}{x+1}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Do : \(\left(\dfrac{1}{x+1}-\dfrac{1}{2}\right)^2\) ≥ 0 ∀x # -1

\(\left(\dfrac{1}{x+1}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)\(\dfrac{3}{4}\)

⇒ PMIN = \(\dfrac{3}{4}\) ⇔ x + 1 = 2 ⇔ x = 1

31 tháng 5 2018

Mk làm cách khác nhé !!!

P = \(\dfrac{x^2+x+1}{x^2+2x+1}\)

P - 1 = \(\dfrac{x^2+x+1}{x^2+2x+1}\) - 1

P - 1 = \(\dfrac{-x}{x^2+2x+1}=\dfrac{-x}{x\left(x+2+\dfrac{1}{x}\right)}\)

P - 1 = \(\dfrac{-1}{x+\dfrac{1}{x}+2}\)

P - 1 = \(\dfrac{-1}{\left(\sqrt{x}-\sqrt{\dfrac{1}{x}}\right)^2+4}\)\(\dfrac{-1}{4}\)

⇒ P ≥ 1 - \(\dfrac{1}{4}=\dfrac{3}{4}\)

⇒ PMin = \(\dfrac{3}{4}\)

Dấu"=" xảy ra khi và chỉ khi : \(x=\dfrac{1}{x}\) ⇔ x = 1

17 tháng 4 2017

Ta có: \(A=\dfrac{x^5+2}{x^3}=x^2+\dfrac{2}{x^3}=\dfrac{x^2}{3}+\dfrac{x^2}{3}+\dfrac{x^2}{3}+\dfrac{1}{x^3}+\dfrac{1}{x^3}\)

Áp dụng bất đẳng thức Cô-si với 5 số không âm, ta có:

\(A\ge5\sqrt[5]{\left(\dfrac{x^2}{3}\right)^3.\left(\dfrac{1}{x^3}\right)^2}=\dfrac{5}{\sqrt[5]{27}}\)

Dấu " = " xảy ra khi \(\dfrac{x^2}{3}=\dfrac{1}{x^3}\Leftrightarrow x^5=3\Leftrightarrow x=\sqrt[5]{3}\)

Vậy GTNN của \(A=\dfrac{x^5+2}{x^3}\left(x>0\right)\)\(\dfrac{5}{\sqrt[5]{27}}\) tại \(x=\sqrt[5]{3}\).

11 tháng 3 2018

Bạn ơi hình như đề cho đk x ko phù hợp

Vì ta sẽ biến đổi đc M = (x+1)^2/x+1 - 4

Vậy ko thể đánh giá để tìm đc GTNN của M bởi (x+1)^2 >= 0 nhưng x+1 chưa chắc đã dương , với -1 < x < 0 thì x+1 < 0

Bạn xem lại đề đi nha 

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

10 tháng 4 2018

\(\Leftrightarrow A=\left(\dfrac{x^2+x}{x^2-2x+1}\right):\left(\dfrac{\left(x+1\right)\left(x-1\right)+x-\left(x^2-2\right)}{x\left(x-1\right)}\right)\\ \)

\(\Leftrightarrow A=\left(\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\right).\left(\dfrac{x\left(x-1\right)}{x+1}\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\A=\dfrac{x^2}{\left(x-1\right)}\end{matrix}\right.\)

a) \(A>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\dfrac{x^2-2x+2}{x-1}>0\end{matrix}\right.\) \(\Leftrightarrow x>1\)

b) \(A=\left(x-1\right)+\dfrac{1}{x-1}+2\)

\(x>1\Leftrightarrow A=\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)^2+4\ge4\) dang thuc x=2

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)